ﻻ يوجد ملخص باللغة العربية
The efficiency of energy conversion in thermoelectric generators (TEGs) is directly proportional to electrical conductivity and Seebeck coefficient while inversely to thermal conductivity. The challenge is to optimize these interdependent parameters simultaneously. In this work, the problem is addressed with a novel approach of nanostructuring and constructive electronic structure modification to achieve a very high value of dimensionless figure of merit ZT greater than 3.6 at 1000 K with negative Seebeck coefficient. Supersaturated solid-solutions of Si-Ge containing 1 atomic percent Fe and 10 atomic percent P are prepared by high-energy ball milling. The bulk samples consisting of ultra-fine nano-crystallites 9.7 nm are obtained by the sophisticated low-temperature & high-pressure sintering process. Despite that the electrical resistivity is slightly high due to the localization of electrons is associated with the highly disordered structure and low electrical density of states near the chemical potential, a very low thermal conductivity k{appa} less than 1 W m-1K-1 and very large magnitude of Seebeck coefficient exceeding 470 uV K-1 are achieved in association with the nanostructuring and the Fe 3d impurity states, respectively, to realize a very large magnitude of ZT.
Thermoelectric (TE) conversion in conducting materials is of eminent importance for providing renewable energy and solid-state cooling. Although traditionally, the Seebeck effect plays a key role for the TE figure of merit zST, it encounters fundamen
Dimensionless thermoelectric figure of merit $ZT$ is investigated for two-dimensional organic conductors $tau-(EDO-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$, $tau$-(EDT-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$ and $tau$-(P-S,S-DMEDT-TTF)_2(AuI_2)_{1+y}$ ($y le 0.875$), r
The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons is investigated. Using the Greens function method, the tight-binding approximation for the electron Hamiltonian and the 4th ne
Half-Heusler alloys (MgAgSb structure) are promising thermoelectric materials. RNiSn half-Heusler phases (R=Hf, Zr, Ti) are the most studied in view of their thermal stability. The highest dimensionless figure of merit (ZT) obtained is ~1 in the temp
The design of uranium-based thermoelectric materials presents a novel and intriguing strategy for directly converting nuclear heat into electrical power. Using high-level first-principles approach combined with accurate solution of Boltzmann transpor