ﻻ يوجد ملخص باللغة العربية
Next-generation spintronic applications require material properties that can be hardly met by one material candidate. Here we demonstrate that by combining insulating and metallic magnets, enhanced spin-charge conversion and energy-efficient thermal spin currents can be realized. We develop a nanowire device consisting of an yttrium iron garnet and permalloy bi-layer. An interfacial temperature gradient drives the nanowire magnetization into auto-oscillations at gigahertz frequencies. Interfacial spin coupling and magnetoresistance of the permalloy layer translate spin dynamics into sizable microwave signals. The results show prospect for energy-efficient spintronic devices and present an experimental realization of magnon condensation in a heterogeneous magnetic system.
Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients
Spin Hall nano-oscillators (SHNOs) utilize pure spin currents to drive local regions of magnetic films and nanostructures into auto-oscillating precession. If such regions are placed in close proximity to each other they can interact and sometimes mu
Topological materials with large spin-orbit coupling and immunity to disorder-induced symmetry breaking show great promise for efficiently converting charge to spin. Here, we report that long-range disordered sputtered WTex thin films exhibit local c
Spin torque and spin Hall effect nanooscillators generate high intensity spin wave auto oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices requ
We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. Firstly, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magne