ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermally driven two-magnet nano-oscillator with large spin-charge conversion

319   0   0.0 ( 0 )
 نشر من قبل Igor Barsukov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Next-generation spintronic applications require material properties that can be hardly met by one material candidate. Here we demonstrate that by combining insulating and metallic magnets, enhanced spin-charge conversion and energy-efficient thermal spin currents can be realized. We develop a nanowire device consisting of an yttrium iron garnet and permalloy bi-layer. An interfacial temperature gradient drives the nanowire magnetization into auto-oscillations at gigahertz frequencies. Interfacial spin coupling and magnetoresistance of the permalloy layer translate spin dynamics into sizable microwave signals. The results show prospect for energy-efficient spintronic devices and present an experimental realization of magnon condensation in a heterogeneous magnetic system.



قيم البحث

اقرأ أيضاً

Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in $mathrm{Y_{3}Fe_{5}O_{12}/Pt}$ bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the $mathrm{Y_{3}Fe_{5}O_{12}}$ layer. This leads to excitation of auto-oscillations of the $mathrm{Y_{3}Fe_{5}O_{12}}$ magnetization and generation of coherent microwave radiation. Our work paves the way towards spin caloritronic devices for microwave and magnonic applications.
Spin Hall nano-oscillators (SHNOs) utilize pure spin currents to drive local regions of magnetic films and nanostructures into auto-oscillating precession. If such regions are placed in close proximity to each other they can interact and sometimes mu tually synchronize, in pairs or in short linear chains. Here we demonstrate robust mutual synchronization of two-dimensional SHNO arrays ranging from 2 x 2 to 8 x 8 nano-constrictions, observed both electrically and using micro-Brillouin Light Scattering microscopy. The signal quality factor, $Q=f/Delta f$, increases linearly with number of mutually synchronized nano-constrictions ($N$), reaching 170,000 in the largest arrays. While the microwave peak power first increases as $N^2$, it eventually levels off, indicating a non-zero relative phase shift between nano-constrictions. Our demonstration will enable the use of SHNO arrays in two-dimensional oscillator networks for high-quality microwave signal generation and neuromorphic computing.
Topological materials with large spin-orbit coupling and immunity to disorder-induced symmetry breaking show great promise for efficiently converting charge to spin. Here, we report that long-range disordered sputtered WTex thin films exhibit local c hemical and structural order as those of Weyl semimetal WTe2 and conduction behavior that is consistent with semi-metallic Weyl fermion. We find large charge-to-spin conversion properties and electrical conductivity in thermally annealed sputtered WTex films that are comparable with those in crystalline WTe2 flakes. Besides, the strength of unidirectional spin Hall magnetoresistance in annealed WTex/Mo/CoFeB heterostructure is 5 to 20 times larger than typical SOT layer/ferromagnet heterostructures reported at room temperature. We further demonstrate room temperature damping-like SOT-driven magnetization switching of in-plane magnetized CoFeB. These large charge-to-spin conversion properties that are robust in the presence of long-range disorder and thermal annealing pave the way for industrial application of a new class of sputtered semimetals.
Spin torque and spin Hall effect nanooscillators generate high intensity spin wave auto oscillations on the nanoscale enabling novel microwave applications in spintronics, magnonics, and neuromorphic computing. For their operation, these devices requ ire externally generated spin currents either from an additional ferromagnetic layer or a material with a high spin Hall angle. Here we demonstrate highly coherent field and current tunable microwave signals from nanoconstrictions in single 15 and 20 nm thick permalloy layers. Using a combination of spin torque ferromagnetic resonance measurements, scanning microBrillouin light scattering microscopy, and micromagnetic simulations, we identify the autooscillations as emanating from a localized edge mode of the nanoconstriction driven by spin orbit torques. Our results pave the way for greatly simplified designs of auto oscillating nanomagnetic systems only requiring a single ferromagnetic layer.
We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. Firstly, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magne tic field. Secondly, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (Hanle effect) can be asymmetric under field reversal. Both features are produced by direct magnetoelectric coupling, which is possible in materials with broken inversion symmetry but was not included in previous spin diffusion theories of nonlocal transport. These effects can be used to identify the relative contributions of different spin-charge conversion mechanisms. They should be observable in adatom-functionalized graphene, and may provide the reason for discrepancies in recent nonlocal transport experiments on graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا