ﻻ يوجد ملخص باللغة العربية
Rapid rotation is a fundamental characteristic of classical Be stars and a crucial property allowing for the formation of their circumstellar disks. Past evolution in a mass and angular momentum transferring binary system offers a plausible solution to how Be stars attained their fast rotation. Although the subdwarf remnants of mass donors in such systems should exist in abundance, only a few have been confirmed due to tight observational constraints. An indirect method of detecting otherwise hidden companions is offered by their effect on the outer parts of Be star disks, which are expected to be disrupted or truncated. In the context of the IR and radio continuum excess radiation originating in the disk, the disk truncation can be revealed by a turndown in the spectral energy distribution due to reduced radio flux levels. In this work we search for signs of spectral turndown in a sample of 57 classical Be stars with radio data, which include new data for 23 stars and the longest wavelength detections so far ($lambda approx$ 10,cm) for 2 stars. We confidently detect the turndown for all 26 stars with sufficient data coverage (20 of which are not known to have close binary companions). For the remaining 31 stars, data are inconclusive as to whether the turndown is present or not. The analysis suggests that many if not all Be stars have close companions influencing their outer disks. If confirmed to be subdwarf companions, the mass transfer spin-up scenario might explain the existence of the vast majority of classical Be stars.
In this study, we analyze the emission lines of different species present in 118 Galactic field classical Be stars in the wavelength range of 3800 - 9000 AA. We re-estimated the extinction parameter (A$_V$) for our sample stars using the newly availa
We present a spectroscopic study of 150 Classical Be stars in 39 open clusters using medium resolution spectra in the wavelength range 3800 - 9000 AA. One-third of the sample (48 stars in 18 clusters) has been studied for the first time. All these ca
We report on searching for Classical B-type emission-line (CBe) stars from the first data release (DR1) of the Large Sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST; also named the Guoshoujing Telescope). A total of 192 (12 known CBes) ob
The intermediate-mass pre-main sequence Herbig Ae/Be stars are key to understanding the differences in formation mechanisms between low- and high-mass stars. The study of the general properties of these objects is hampered by the fact that few and mo
Optical and near-infrared observations are compiled for the three gamma-ray binaries hosting Be stars: PSR B1259-63, LSI+61 303, and HESS J0632+057. The emissions from the Be disk are considered to vary according to the changes in its structure, some