ﻻ يوجد ملخص باللغة العربية
While 2D Gibbsian particle systems might exhibit orientational order resulting in a lattice-like structure, these particle systems do not exhibit positional order if the interaction between particles satisfies some weak assumptions. Here we investigate to which extent particles within a box of size $2n times 2n$ may fluctuate from their ideal lattice position. We show that particles near the center of the box typically show a displacement at least of order $sqrt{log n}$. Thus we extend recent results on the hard disk model to particle systems with fairly arbitrary particle spins and interaction. Our result applies to models such as rather general continuum Potts type models, e.g. with Widom-Rowlinson or Lenard-Jones-type interaction.
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate
We consider the system of particles with equal charges and nearest neighbour Coulomb interaction on the interval. We study local properties of this system, in particular the distribution of distances between neighbouring charges. For zero temperature
The 1-arm exponent $rho$ for the ferromagnetic Ising model on $mathbb{Z}^d$ is the critical exponent that describes how fast the critical 1-spin expectation at the center of the ball of radius $r$ surrounded by plus spins decays in powers of $r$. Sup
We derive mean-field equations for a general class of ferromagnetic spin systems with an explicit error bound in finite volumes. The proof is based on a link between the mean-field equation and the free convolution formalism of random matrix theory,
We consider the large-time behavior of the solution $ucolon [0,infty)timesZto[0,infty)$ to the parabolic Anderson problem $partial_t u=kappaDelta u+xi u$ with initial data $u(0,cdot)=1$ and non-positive finite i.i.d. potentials $(xi(z))_{zinZ}$. Unli