ترغب بنشر مسار تعليمي؟ اضغط هنا

Why are some galaxy clusters underluminous? The very low concentration of the CL2015 mass profile

160   0   0.0 ( 0 )
 نشر من قبل Stefano Andreon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our knowledge of the variety of galaxy clusters has been increasing in the last few years thanks to our progress in understanding the severity of selection effects on samples. To understand the reason for the observed variety, we study CL2015, a cluster easily missed in X-ray selected observational samples. Its core-excised X-ray luminosity is low for its mass M500, well below the mean relation for an X-ray selected sample, but only ~1.5 sigma below that derived for an X-ray unbiased sample. We derived thermodynamic profiles and hydrostatic masses with the acquired deep Swift X-ray data, and we used archival Einstein, Planck, and SDSS data to derive additional measurements, such as integrated Compton parameter, total mass, and stellar mass. The pressure and the electron density profiles of CL2015 are systematically outside the +/- 2 sigma range of the universal profiles; in particular the electron density profile is even lower than the one derived from Planck-selected clusters. CL2015 also turns out to be fairly different in the X-ray luminosity versus integrated pressure scaling compared to an X-ray selected sample, but it is a normal object in terms of stellar mass fraction. CL2015s hydrostatic mass profile, by itself or when is considered together with dynamical masses, shows that the cluster has an unusual low concentration and an unusual sparsity compared to clusters in X-ray selected samples. The different behavior of CL2015 is caused by its low concentration. When concentration differences are accounted for, the properties of CL2015 become consistent with comparison samples. CL2015 is perhaps the first known cluster with a remarkably low mass concentration for which high quality X-ray data exist. Objects similar to CL2015 fail to enter observational X-ray selected samples because of their low X-ray luminosity relative to their mass.



قيم البحث

اقرأ أيضاً

We present a new determination of the concentration-mass relation for galaxy clusters based on our comprehensive lensing analysis of 19 X-ray selected galaxy clusters from the Cluster Lensing and Supernova Survey with Hubble (CLASH). Our sample spans a redshift range between 0.19 and 0.89. We combine weak lensing constraints from the Hubble Space Telescope (HST) and from ground-based wide field data with strong lensing constraints from HST. The result are reconstructions of the surface-mass density for all CLASH clusters on multi-scale grids. Our derivation of NFW parameters yields virial masses between 0.53 x 10^15 and 1.76 x 10^15 M_sol/h and the halo concentrations are distributed around c_200c ~ 3.7 with a 1-sigma significant negative trend with cluster mass. We find an excellent 4% agreement between our measured concentrations and the expectation from numerical simulations after accounting for the CLASH selection function based on X-ray morphology. The simulations are analyzed in 2D to account for possible biases in the lensing reconstructions due to projection effects. The theoretical concentration-mass (c-M) relation from our X-ray selected set of simulated clusters and the c-M relation derived directly from the CLASH data agree at the 90% confidence level.
Concentration is one of the key dark matter halo properties that could drive the scatter in the stellar-to-halo mass relation of massive clusters. We derive robust photometric stellar masses for a sample of brightest central galaxies (BCGs) in SDSS r edMaPPer clusters at $0.17<z<0.3$, and split the clusters into two equal-halo mass subsamples by their BCG stellar mass $M_*$. The weak lensing profiles $DeltaSigma$ of the two cluster subsamples exhibit different slopes on scales below 1 M$pc/h$. To interpret such discrepancy, we perform a comprehensive Bayesian modelling of the two $DeltaSigma$ profiles by including different levels of miscentring effects between the two subsamples as informed by X-ray observations. We find that the two subsamples have the same average halo mass of $1.74 times 10^{14} M_{odot}/h$, but the concentration of the low-$M_*$ clusters is $5.87_{-0.60}^{+0.77}$, ${sim}1.5sigma$ smaller than that of their high-$M_*$ counterparts~($6.95_{-0.66}^{+0.78}$). Furthermore, both cluster weak lensing and cluster-galaxy cross-correlations indicate that the large-scale bias of the low-$M_*$, low-concentration clusters are ${sim}10%$ higher than that of the high-$M_*$, high-concentration systems, hence possible evidence of the cluster assembly bias effect. Our results reveal a remarkable physical connection between the stellar mass within 20{-}30 k$pc/h$, the dark matter mass within ${sim}$ 200 k$pc/h$, and the cosmic overdensity on scales above 10 M$pc/h$, enabling a key observational test of theories of co-evolution between massive clusters and their central galaxies.
164 - Marco Velliscig 2014
We use cosmological hydrodynamical simulations to investigate how the inclusion of physical processes relevant to galaxy formation (star formation, metal-line cooling, stellar winds, supernovae and feedback from Active Galactic Nuclei, AGN) change th e properties of haloes, over four orders of magnitude in mass. We find that gas expulsion and the associated dark matter (DM) expansion induced by supernova-driven winds are important for haloes with masses M200 < 10^13 Msun, lowering their masses by up to 20% relative to a DM-only model. AGN feedback, which is required to prevent overcooling, has a significant impact on halo masses all the way up to cluster scales (M200 ~ 10^15 Msun). Baryonic physics changes the total mass profiles of haloes out to several times the virial radius, a modification that cannot be captured by a change in the halo concentration. The decrease in the total halo mass causes a decrease in the halo mass function of about 20%. This effect can have important consequences for abundance matching technique as well as for most semi-analytic models of galaxy formation. We provide analytic fitting formulae, derived from simulations that reproduce the observed baryon fractions, to correct halo masses and mass functions from DM-only simulations. The effect of baryonic physics (AGN feedback in particular) on cluster number counts is about as large as changing the cosmology from WMAP7 to Planck, even when a moderately high mass limit of M500 ~ 10^14 Msun is adopted. Thus, for precision cosmology the effects of baryons must be accounted for.
Galaxy clusters undergo mergers that can generate extended radio sources called radio relics. Radio relics are the consequence of merger-induced shocks that propagate in the intra cluster medium (ICM). In this paper we analyse the radio, optical and X-ray data from a candidate galaxy cluster that has been selected from the radio emission coming from a candidate radio relic detected in NRAO VLA Sky Survey (NVSS). Our aim is to clarify the nature of this source and prove that under certain conditions radio emission from radio relics can be used to trace relatively low-mass galaxy clusters. We have observed the candidate galaxy cluster with the Giant Meterwave Radio Telescope (GMRT) at three different frequencies. These datasets have been analysed together with archival data from ROSAT in the X-ray and with archival data from the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) telescope in four different optical bands. We confirm the presence of a 1 Mpc long radio relic located in the outskirts of a previously unknown galaxy cluster. We confirm the presence of the galaxy cluster through dedicated optical observations and using archival X-ray data. Due to its proximity and similar redshift to a known Abell cluster, we named it: Abell 3527-bis. The galaxy cluster is among the least massive cluster known to host a radio relic. We showed that radio relics can be effectively used to trace a subset of relatively low-mass galaxy clusters that might have gone undetected in X-ray or Sunyaev-Zeldovich (SZ) surveys. This technique might be used in future deep, low-frequency surveys as those carried on by LOFAR, uGMRT and, ultimately, SKA.
141 - Keiichi Umetsu 2016
The lensing signal around galaxy clusters can, in principle, be used to test detailed predictions for their average mass profile from numerical simulations. However, the intrinsic shape of the profiles can be smeared out when a sample that spans a wi de range of cluster masses is averaged in physical length units. This effect especially conceals rapid changes in gradient such as the steep drop associated with the splashback radius, a sharp edge corresponding to the outermost caustic in accreting halos. We optimize the extraction of such local features by scaling individual halo profiles to a number of spherical overdensity radii, and apply this method to 16 X-ray-selected high-mass clusters targeted in the Cluster Lensing And Supernova survey with Hubble. By forward-modeling the weak- and strong-lensing data presented by Umetsu et al., we show that, regardless of the scaling overdensity, the projected ensemble density profile is remarkably well described by an NFW or Einasto profile out to $R sim 2.5h^{-1}$Mpc, beyond which the profiles flatten. We constrain the NFW concentration to $c_{200c} = 3.66 pm 0.11$ at $M_{200c} simeq 1.0 times 10^{15}h^{-1}M_odot$, consistent with and improved from previous work that used conventionally stacked lensing profiles, and in excellent agreement with theoretical expectations. Assuming the profile form of Diemer & Kravtsov and generic priors calibrated from numerical simulations, we place a lower limit on the splashback radius of the cluster halos, if it exists, of $R_{sp}/r_{200m} > 0.89$ ($R_{sp} > 1.83h^{-1}$Mpc) at 68% confidence. The corresponding density feature is most pronounced when the cluster profiles are scaled by $r_{200m}$, and smeared out when scaled to higher overdensities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا