ﻻ يوجد ملخص باللغة العربية
Taking advantage of 10 years of Fermi-LAT data, we perform a new and deep analysis of the pulsar wind nebula (PWN) HESS J1825-137. We present the results of the spectral analysis and of the first energy-resolved morphological study of the PWN HESS J1825-137 from 1 GeV to 1 TeV. This PWN is an archetypal system making it a perfect laboratory for studying particle transport mechanisms. Combining this analysis with recent H.E.S.S. results enables a more complete picture of the nebula to emerge.
Taking advantage of more than 11 years of Fermi-LAT data, we perform a new and deep analysis of the pulsar wind nebula (PWN) HESS J1825-137. Combining this analysis with recent H.E.S.S. results we investigate and constrain the particle transport mech
Aims: We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics. Methods:
The pulsar wind nebula (PWN) HESS~J1825-137, known to exhibit strong energy dependent morphology, was discovered by HESS in 2005. Powered by the pulsar PSR~B1823-13, the TeV gamma-ray emitting nebula is significantly offset from the pulsar. The asymm
We present a new and deep analysis of the pulsar wind nebula (PWN) HESS,J1825--137 with a comprehensive data set of almost 400 hours taken with the H.E.S.S. array between 2004 and 2016. The large amount of data, and the inclusion of low-threshold H.E
Deep observation of the High Energy Stereoscopic System (HESS) on the most extended pulsar wind nebula HESS J1825-137 reveals an enhanced energy-dependent morphology, providing useful information on the particle transport mechanism in the nebula. We