ترغب بنشر مسار تعليمي؟ اضغط هنا

The KMOS^3D Survey: data release and final survey paper

72   0   0.0 ( 0 )
 نشر من قبل Emily Wisnioski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the completed KMOS$^mathrm{3D}$ survey $-$ an integral field spectroscopic survey of 739, $log(M_{star}/M_{odot})>9$, galaxies at $0.6<z<2.7$ using the K-band Multi Object Spectrograph (KMOS) at the Very Large Telescope (VLT). KMOS$^mathrm{3D}$ provides a population-wide census of kinematics, star formation, outflows, and nebular gas conditions both on and off the star-forming galaxy main sequence through the spatially resolved and integrated properties of H$alpha$, [N II], and [S II] emission lines. We detect H$alpha$ emission for 91% of galaxies on the main sequence of star-formation and 79% overall. The depth of the survey has allowed us to detect galaxies with star-formation rates below 1 M$_{odot}$/ yr$^{-1}$, as well as to resolve 81% of detected galaxies with $geq3$ resolution elements along the kinematic major axis. The detection fraction of H$alpha$ is a strong function of both color and offset from the main sequence, with the detected and non-detected samples exhibiting different SED shapes. Comparison of H$alpha$ and UV+IR star formation rates (SFRs) reveal that dust attenuation corrections may be underestimated by 0.5 dex at the highest masses ($log(M_{star}/M_{odot})>10.5$). We confirm our first year results of a high rotation dominated fraction (monotonic velocity gradient and $v_mathrm{rot}$/$sigma_0 > sqrt{3.36}$) of 77% for the full KMOS$^mathrm{3D}$ H$alpha$sample. The rotation-dominated fraction is a function of both stellar mass and redshift with the strongest evolution measured over the redshift range of the survey for galaxies with $log(M_{star}/M_{odot})<10.5$. With this paper we include a final data release of all 739 observed objects.



قيم البحث

اقرأ أيضاً

We have entered a new era where integral-field spectroscopic surveys of galaxies are sufficiently large to adequately sample large-scale structure over a cosmologically significant volume. This was the primary design goal of the SAMI Galaxy Survey. H ere, in Data Release 3 (DR3), we release data for the full sample of 3068 unique galaxies observed. This includes the SAMI cluster sample of 888 unique galaxies for the first time. For each galaxy, there are two primary spectral cubes covering the blue (370-570nm) and red (630-740nm) optical wavelength ranges at spectral resolving power of R=1808 and 4304 respectively. For each primary cube, we also provide three spatially binned spectral cubes and a set of standardized aperture spectra. For each galaxy, we include complete 2D maps from parameterized fitting to the emission-line and absorption-line spectral data. These maps provide information on the gas ionization and kinematics, stellar kinematics and populations, and more. All data are available online through Australian Astronomical Optics (AAO) Data Central.
The 2dF Galaxy Redshift Survey (2dFGRS) has obtained spectra for 245591 sources, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of b_J=19.45. Reliable redshifts were measured for 221414 galaxies. The galaxies are select ed from the extended APM Galaxy Survey and cover an area of approximately 1500 square degrees in three regions: an NGP strip, an SGP strip and random fields scattered around the SGP strip. This paper describes the 2dFGRS final data release of 30 June 2003 and complements Colless et al. (2001), which described the survey and the initial 100k data release. The 2dFGRS database and full documentation are available on the WWW at http://www.mso.anu.edu.au/2dFGRS/
This paper presents cosmological results from the final data release of the WiggleZ Dark Energy Survey. We perform full analyses of different cosmological models using the WiggleZ power spectra measured at z=0.22, 0.41, 0.60, and 0.78, combined with other cosmological datasets. The limiting factor in this analysis is the theoretical modelling of the galaxy power spectrum, including non-linearities, galaxy bias, and redshift-space distortions. In this paper we assess several different methods for modelling the theoretical power spectrum, testing them against the Gigaparsec WiggleZ simulations (GiggleZ). We fit for a base set of 6 cosmological parameters, {Omega_b h^2, Omega_CDM h^2, H_0, tau, A_s, n_s}, and 5 supplementary parameters {n_run, r, w, Omega_k, sum m_nu}. In combination with the Cosmic Microwave Background (CMB), our results are consistent with the LambdaCDM concordance cosmology, with a measurement of the matter density of Omega_m =0.29 +/- 0.016 and amplitude of fluctuations sigma_8 = 0.825 +/- 0.017. Using WiggleZ data with CMB and other distance and matter power spectra data, we find no evidence for any of the extension parameters being inconsistent with their LambdaCDM model values. The power spectra data and theoretical modelling tools are available for use as a module for CosmoMC, which we here make publicly available at http://smp.uq.edu.au/wigglez-data . We also release the data and random catalogues used to construct the baryon acoustic oscillation correlation function.
We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing spectroscopy of everything without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-$alpha$ (Lya) emitting galaxies with redshifts $2.9 lesssim z lesssim 6.3$. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of $Delta$z$simeq$0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available on the website https://musewide.aip.de. [abridged]
The WiggleZ Dark Energy Survey measured the redshifts of over 200,000 UV-selected (NUV<22.8 mag) galaxies on the Anglo-Australian Telescope. The survey detected the baryon acoustic oscillation signal in the large scale distribution of galaxies over t he redshift range 0.2<z<1.0, confirming the acceleration of the expansion of the Universe and measuring the rate of structure growth within it. Here we present the final data release of the survey: a catalogue of 225415 galaxies and individual files of the galaxy spectra. We analyse the emission-line properties of these UV-luminous Lyman-break galaxies by stacking the spectra in bins of luminosity, redshift, and stellar mass. The most luminous (-25 mag < MFUV <-22 mag) galaxies have very broad H-beta emission from active nuclei, as well as a broad second component to the [OIII] (495.9 nm, 500.7 nm) doublet lines that is blue shifted by 100 km/s, indicating the presence of gas outflows in these galaxies. The composite spectra allow us to detect and measure the temperature-sensitive [OIII] (436.3 nm) line and obtain metallicities using the direct method. The metallicities of intermediate stellar mass (8.8<log(M*/Msun)<10) WiggleZ galaxies are consistent with normal emission-line galaxies at the same masses. In contrast, the metallicities of high stellar mass (10<log(M*/Msun)<12) WiggleZ galaxies are significantly lower than for normal emission-line galaxies at the same masses. This is not an effect of evolution as the metallicities do not vary with redshift; it is most likely a property specific to the extremely UV-luminous WiggleZ galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا