ﻻ يوجد ملخص باللغة العربية
The range of a trigonometric polynomial with complex coefficients can be interpreted as the image of the unit circle under a Laurent polynomial. We show that this range is contained in a real algebraic subset of the complex plane. Although the containment may be proper, the difference between the two sets is finite, except for polynomials with certain symmetry.
Finite trigonometric sums occur in various branches of physics, mathematics, and their applications. These sums may contain various powers of one or more trigonometric functions. Sums with one trigonometric function are known, however sums with produ
Via a unified geometric approach, a class of generalized trigonometric functions with two parameters are analytically extended to maximal domains on which they are univalent. Some consequences are deduced concerning commutation with rotation, continu
In this paper, we present a correct proof of an $L_p$-inequality concerning the polar derivative of a polynomial with restricted zeros. We also extend Zygmunds inequality to the polar derivative of a polynomial.
In his 2006 paper, Jin proves that Kalantaris bounds on polynomial zeros, indexed by $m leq 2$ and called $L_m$ and $U_m$ respectively, become sharp as $mrightarrowinfty$. That is, given a degree $n$ polynomial $p(z)$ not vanishing at the origin and
In this short Note we show that the direct image sheaf R 1 $pi$ * (O X) associated to an analytic family of compact complex manifolds $pi$ : X $rightarrow$ S parametrized by a reduced complex space S is a locally free (coherent) sheaf of O S --module