ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved sensitivity to the CKM phase $gamma$ through binning phase space in $B^- to DK^-$, $D to K^+pi^-pi^-pi^+$ decays

78   0   0.0 ( 0 )
 نشر من قبل Tim Evans
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A binning scheme is proposed for $D^0 to K^+pi^-pi^-pi^+ $ phase space that will improve the sensitivity of a $B^- to DK^-$ analysis to the angle $gamma$ of the Cabibbo-Kobayashi-Maskawa Unitarity Triangle. The scheme makes use of amplitude models recently reported by the LHCb collaboration. Assuming that a four-bin scheme optimised on the models retains a similar sensitivity when applied in data, it is estimated that the statistical uncertainty on $gamma$ from the $B$-meson sample so far collected by the LHCb experiment will be as low as 5 degrees. This will be one of the most precise results available for any single decay mode in a $B^- to D K^-$ measurement. Quantum-correlated $Dbar{D}$ data accumulated by the CLEO-c experiment are analysed to provide first constraints on the coherence factors and average strong-phase differences in the four bins, which are necessary inputs for the measurement. These constraints are compared with the predictions of the model, and consequences for the measurement of $gamma$ are discussed.



قيم البحث

اقرأ أيضاً

We report a study of the suppressed $B^-to DK^-pi^+pi^-$ and favored $B^-to Dpi^-pi^+pi^-$ decays, where the neutral $D$ meson is detected through its decays to the $K^{mp}pi^{pm}$ and CP-even $K^+K^-$ and $pi^+pi^-$ final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb$^{-1}$. We observe the first significant signals in the CP-even final states of the $D$ meson for both the suppressed $B^-to DK^-pi^+pi^-$ and favored $B^-to Dpi^-pi^+pi^-$ modes, as well as in the doubly Cabibbo-suppressed $Dto K^+pi^-$ final state of the $B^-to Dpi^-pi^+pi^-$ decay. Evidence for the ADS suppressed decay $B^{-}to DK^-pi^+pi^-$, with $Dto K^+pi^-$, is also presented. From the observed yields in the $B^-to DK^-pi^+pi^-$, $B^-to Dpi^-pi^+pi^-$ and their charge conjugate decay modes, we measure the value of the weak phase to be $gamma=(74^{+20}_{-19})^{rm o}$. This is one of the most precise single-measurement determinations of $gamma$ to date.
The decays $Dto K^-pi^+pi^+pi^-$ and $D to K^-pi^+pi^0$ are studied in a sample of quantum-correlated $Dbar{D}$ pairs produced through the process $e^+e^- to psi(3770) to Dbar{D}$, exploiting a data set collected by the BESIII experiment that corresp onds to an integrated luminosity of 2.93 fb$^{-1}$. Here $D$ indicates a quantum superposition of a $D^0$ and a $bar{D}^0$ meson. By reconstructing one neutral charm meson in a signal decay, and the other in the same or a different final state, observables are measured that contain information on the coherence factors and average strong-phase differences of each of the signal modes. These parameters are critical inputs in the measurement of the angle $gamma$ of the Unitarity Triangle in $B^- to DK^-$ decays at the LHCb and Belle II experiments. The coherence factors are determined to be $R_{K3pi}=0.52^{+0.12}_{-0.10}$ and $R_{Kpipi^0}=0.78 pm 0.04$, with values for the average strong-phase differences that are $delta_D^{K3pi}=left(167^{+31}_{-19}right)^circ$ and $delta_D^{Kpipi^0}=left(196^{+14}_{-15}right)^circ$, where the uncertainties include both statistical and systematic contributions. The analysis is re-performed in four bins of the phase-space of the $D to K^-pi^+pi^+pi^-$ to yield results that will allow for a more sensitive measurement of $gamma$ with this mode, to which the BESIII inputs will contribute an uncertainty of around 6$^circ$.
The Dalitz plot analysis technique is used to study the resonant substructures of $B^{-} to D^{+} pi^{-} pi^{-}$ decays in a data sample corresponding to 3.0 ${rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of resonances with spins 1, 2 and 3 at high $D^{+}pi^{-}$ mass. The data are fitted with an amplitude model composed of a quasi-model-independent function to describe the $D^{+}pi^{-}$ S-wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{*0}$ states, and components corresponding to the $D^{*}_{2}(2460)^{0}$, $D^{*}_{1}(2680)^{0}$, $D^{*}_{3}(2760)^{0}$ and $D^{*}_{2}(3000)^{0}$ resonances. The masses and widths of these resonances are determined together with the branching fractions for their production in $B^{-} to D^{+} pi^{-} pi^{-}$ decays. The $D^{+}pi^{-}$ S-wave has phase motion consistent with that expected due to the presence of the $D^{*}_{0}(2400)^{0}$ state. These results constitute the first observations of the $D^{*}_{3}(2760)^{0}$ and $D^{*}_{2}(3000)^{0}$ resonances.
CP-violating asymmetries in $B to pi pi$ and $B to rho rho$ decays can help specify the weak phase $phi_2 = alpha$ of the Cabibbo-Kobayashi-% Maskawa (CKM) matrix. We discuss the impact of improved measurements of these processes such as will be avai lable in the near future, finding special value in better measurement of the time-dependent CP violation parameter $S_{00}$ in $B^0 to pi^0 pi^0$ and $B^0 to rho^0 rho^0$. Reducing the errors on $B to rho rho$ measurements by a factor of two can potentially lead to an error in $phi_2 = alpha$ just above $2^circ$, at which level isospin-breaking corrections must be considered.
A new approach to the analysis of three body decays is presented. Model-independent results are obtained for the swave $Kpi$ amplitude as a function of $Kpi$ invariant mass. These are compared with results from $Kmpip$ elastic scattering, and the pre diction of the Watson theorem, that the phase behavour be the same below $Keta^{prime}$ threshold, is tested. Contributions from $I=half$ and $I={3over 2}$ are not resolved in this study. If $I=half$ dominates, however, the Watson theorem does not describe these data well.}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا