ﻻ يوجد ملخص باللغة العربية
A binning scheme is proposed for $D^0 to K^+pi^-pi^-pi^+ $ phase space that will improve the sensitivity of a $B^- to DK^-$ analysis to the angle $gamma$ of the Cabibbo-Kobayashi-Maskawa Unitarity Triangle. The scheme makes use of amplitude models recently reported by the LHCb collaboration. Assuming that a four-bin scheme optimised on the models retains a similar sensitivity when applied in data, it is estimated that the statistical uncertainty on $gamma$ from the $B$-meson sample so far collected by the LHCb experiment will be as low as 5 degrees. This will be one of the most precise results available for any single decay mode in a $B^- to D K^-$ measurement. Quantum-correlated $Dbar{D}$ data accumulated by the CLEO-c experiment are analysed to provide first constraints on the coherence factors and average strong-phase differences in the four bins, which are necessary inputs for the measurement. These constraints are compared with the predictions of the model, and consequences for the measurement of $gamma$ are discussed.
We report a study of the suppressed $B^-to DK^-pi^+pi^-$ and favored $B^-to Dpi^-pi^+pi^-$ decays, where the neutral $D$ meson is detected through its decays to the $K^{mp}pi^{pm}$ and CP-even $K^+K^-$ and $pi^+pi^-$ final states. The measurement is
The decays $Dto K^-pi^+pi^+pi^-$ and $D to K^-pi^+pi^0$ are studied in a sample of quantum-correlated $Dbar{D}$ pairs produced through the process $e^+e^- to psi(3770) to Dbar{D}$, exploiting a data set collected by the BESIII experiment that corresp
The Dalitz plot analysis technique is used to study the resonant substructures of $B^{-} to D^{+} pi^{-} pi^{-}$ decays in a data sample corresponding to 3.0 ${rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012.
CP-violating asymmetries in $B to pi pi$ and $B to rho rho$ decays can help specify the weak phase $phi_2 = alpha$ of the Cabibbo-Kobayashi-% Maskawa (CKM) matrix. We discuss the impact of improved measurements of these processes such as will be avai
A new approach to the analysis of three body decays is presented. Model-independent results are obtained for the swave $Kpi$ amplitude as a function of $Kpi$ invariant mass. These are compared with results from $Kmpip$ elastic scattering, and the pre