ﻻ يوجد ملخص باللغة العربية
Let $fcolon M^{2n}tomathbb{R}^{2n+p}$ denote an isometric immersion of a Kaehler manifold of complex dimension $ngeq 2$ into Euclidean space with codimension $p$. If $2pleq 2n-1$, we show that generic rank conditions on the second fundamental form of the submanifold imply that $f$ has to be a minimal submanifold. In fact, for codimension $pleq 11$ we prove that $f$ must be holomorphic with respect to some complex structure in the ambient space.
Let $fcolon M^{2n}tomathbb{R}^{2n+ell}$, $n geq 5$, denote a conformal immersion into Euclidean space with codimension $ell$ of a Kaehler manifold of complex dimension $n$ and free of flat points. For codimensions $ell=1,2$ we show that such a subman
Non-existence of warped product semi-slant submanifolds of Kaehler manifolds was proved in [17], it is interesting to find their existence. In this paper, we prove the existence of warped product semi-slant submanifolds of nearly Kaehler manifolds by
We obtain a basic inequality involving the Laplacian of the warping function and the squared mean curvature of any warped product isometrically immersed in a Riemannian manifold without assuming any restriction on the Riemann curvature tensor of the
We show that every Kaehler algebraic curvature tensor is geometrically realizable by a Kaehler manifold of constant scalar curvature. We also show that every para-Kaehler algebraic curvature tensor is geometrically realizable by a para-Kaehler manifold of constant scalar curvature
Two geometric inequalities are established for Einstein totally real submanifolds in a complex space form. As immediate applications of these inequalities, some non-existence results are obtained.