ترغب بنشر مسار تعليمي؟ اضغط هنا

Torus Constraints in ANEPD-CXO245: A Compton-thick AGN with Double-Peaked Narrow Lines

89   0   0.0 ( 0 )
 نشر من قبل Takamitsu Miyaji
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the torus constraints of the Compton-thick AGN with double-peaked optical narrow line region (NLR) emission lines, ANEPD-CXO245, at z=0.449 in the AKARI NEP Deep Field. The unique infrared data on this field, including those from the nine-band photometry over 2-24 $mu$m with the AKARI Infrared Camera (IRC), and the X-ray spectrum from Chandra allow us to constrain torus parameters such as the torus optical depth, X-ray absorbing column, torus angular width ($sigma$) and viewing angle ($i$). We analyze the X-ray spectrum as well as the UV-optical-infrared spectral energy distribution (UOI-SED) with clumpy torus models in X-ray (XCLUMPY; Tanimoto et al. 2019) and infrared (CLUMPY; Nenkova et al. 2008) respectively. From our current data, the constraints on $sigma$--$i$ from both X-rays and UOI show that the line of sight crosses the torus as expected for a type 2 AGN. We obtain a small X-ray scattering fraction (<0.1%), which suggests narrow torus openings, giving preference to the bi-polar outflow picture of the double-peaked profile. Comparing the optical depth of the torus from the UOI-SED and the absorbing column density $N_{rm H}$ from the X-ray spectrum, we find that the gas-to-dust ratio is $gtrsim 4$ times larger than the Galactic value.



قيم البحث

اقرأ أيضاً

AGN with double-peaked narrow lines (DPAGN) may be caused by kiloparsec scale binary AGN, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGN in which the two narrow line components have closely similar intensity as being espec ially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGN from Smith et al. (2010), the equal-peaked objects (EPAGN) have [Ne V]/[O III] ratios lower than for a control sample of non-double peaked AGN. This is unexpected for a pair of normal AGN in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H-beta ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.
We present the analysis of a sample of 35 candidate Compton thick (CT-) active galactic nuclei (AGNs) selected in the nearby Universe (average redshift <z>~0.03) with the Swift-BAT 100-month survey. All sources have available NuSTAR data, thus allowi ng us to constrain with unprecedented quality important spectral parameters such as the obscuring torus line-of-sight column density (N_{H, z}), the average torus column density (N_{H, tor}) and the torus covering factor (f_c). We compare the best-fit results obtained with the widely used MyTorus (Murphy et al. 2009) model with those of the recently published borus02 model (Balokovic et al. 2018) used in the same geometrical configuration of MyTorus (i.e., with f_c=0.5). We find a remarkable agreement between the two, although with increasing dispersion in N_{H, z} moving towards higher column densities. We then use borus02 to measure f_c. High-f_c sources have, on average, smaller offset between N_{H, z} and N_{H, tor} than low-f_c ones. Therefore, low f_c values can be linked to a patchy torus scenario, where the AGN is seen through an over-dense region in the torus, while high-f_c objects are more likely to be obscured by a more uniform gas distribution. Finally, we find potential evidence of an inverse trend between f_c and the AGN 2-10 keV luminosity, i.e., sources with higher f_c values have on average lower luminosities.
128 - J.-M Wang 2009
Double-peaked [O III]5007, profiles in active galactic nuclei (AGNs) may provide evidence for the existence of dual AGNs, but a good diagnostic for selecting them is currently lacking. Starting from $sim$ 7000 active galaxies in SDSS DR7, we assemble a sample of 87 type 2 AGNs with double-peaked [O III]5007, profiles. The nuclear obscuration in the type 2 AGNs allows us to determine redshifts of host galaxies through stellar absorption lines. We typically find that one peak is redshifted and another is blueshifted relative to the host galaxy. We find a strong correlation between the ratios of the shifts and the double peak fluxes. The correlation can be naturally explained by the Keplerian relation predicted by models of co-rotating dual AGNs. The current sample statistically favors that most of the [O III] double-peaked sources are dual AGNs and disfavors other explanations, such as rotating disk and outflows. These dual AGNs have a separation distance at $sim 1$ kpc scale, showing an intermediate phase of merging systems. The appearance of dual AGNs is about $sim 10^{-2}$, impacting on the current observational deficit of binary supermassive black holes with a probability of $sim 10^{-4}$ (Boroson & Lauer).
249 - Weiwei Xu , Zhu Liu , Lijun Gou 2015
The cold disk/torus gas surrounding active galactic nuclei (AGN) emits fluorescent lines when irradiated by hard X-ray photons. The fluorescent lines of elements other than Fe and Ni are rarely detected due to their relative faintness. We report the detection of K$alpha$ lines of neutral Si, S, Ar, Ca, Cr, and Mn, along with the prominent Fe K$alpha$, Fe K$beta$, and Ni K$alpha$ lines, from the deep Chandra observation of the low-luminosity Compton-thick AGN in M51. The Si K$alpha$ line at 1.74 keV is detected at $sim3sigma$, the other fluorescent lines have a significance between 2 and 2.5 $sigma$, while the Cr line has a significance of $sim1.5sigma$. These faint fluorescent lines are made observable due to the heavy obscuration of the intrinsic spectrum of M51, which is revealed by Nustar observation above 10 keV. The hard X-ray continuum of M51 from Chandra and Nustar can be fitted with a power-law spectrum with an index of 1.8, reprocessed by a torus with an equatorial column density of $N_{rm H}sim7times10^{24}$ cm$^{-2}$ and an inclination angle of $74$ degrees. This confirms the Compton-thick nature of the nucleus of M51. The relative element abundances inferred from the fluxes of the fluorescent lines are similar to their solar values, except for Mn, which is about 10 times overabundant. It indicates that Mn is likely enhanced by the nuclear spallation of Fe.
We have performed a spectral decomposition to search for dual active galactic nuclei (DAGNs) in the Sloan Digital Sky Survey (SDSS) quasars with $z<0.25$. Potential DAGN candidates are searched by referencing velocity offsets and spectral shapes of d ouble-peaked [O III] lines of known DAGNs. Out of 1271 SDSS quasars, we have identified 77 DAGN candidates. Optical and mid-infrared diagnostic diagrams are used to investigate the ionizing source in the DAGN candidates. The optical diagnostic analysis suggests 93% of them are powered by AGNs, and mid-infrared diagnostic analysis suggests 97% are powered by AGNs. About 1/3 of the SDSS images of the DAGN candidates show signs of tidal interaction, but we are unable to identify double nuclei in most of them due to the low spatial resolution of the archival imaging data available for most of the sample. The radio-loud fraction of the DAGN candidates ($sim$10%) is similar to that of typical AGNs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا