ﻻ يوجد ملخص باللغة العربية
In this work we investigate quantum-enhanced target detection in the presence of large background noise using multidimensional quantum correlations between photon pairs generated through spontaneous parametric down-conversion. Until now similar experiments have only utilized one of the photon pairs many degrees of freedom such as temporal correlations and photon number correlations. Here, we utilized both temporal and spectral correlations of the photon pairs and achieved over an order of magnitude reduction to the background noise and in turn significant reduction to data acquisition time when compared to utilizing only temporal modes. We believe this work represents an important step in realizing a practical, real-time quantum-enhanced target detection system. The demonstrated technique will also be of importance in many other quantum sensing applications and quantum communications.
Quantum computational approaches to some classic target identification and localization algorithms, especially for radar images, are investigated, and are found to raise a number of quantum statistics and quantum measurement issues with much broader
Quantum illumination is a quantum sensing technique where entanglement is exploited to improve the detection of low-reflectivity targets in a strong thermal background. In this paper, we study the quantum illumination of suspected targets under the c
Given a quantum system on many qubits split into a few different parties, how much total correlations are there between these parties? Such a quantity -- aimed to measure the deviation of the global quantum state from an uncorrelated state with the s
We describe a simple multivariate technique of likelihood ratios for improved discrimination of signal and background in multi-dimensional quantum target detection. The technique combines two independent variables, time difference and summed energy,
It is believed that the optimal performance of a quantum lidar or radar in the absence of an idler and only using Gaussian resources cannot exceed the performance of a semiclassical setup based on coherent states and homodyne detection. Here we dispr