ﻻ يوجد ملخص باللغة العربية
We present the {sc warpfield} emission predictor, {sc warpfield-emp}, which couples the 1D stellar feedback code {sc warpfield} with the {sc cloudy} hii region/PDR code and the {sc polaris} radiative transfer code, in order to make detailed predictions for the time-dependent line and continuum emission arising from the H{sc ii} region and PDR surrounding an evolving star cluster. {sc warpfield-emp} accounts for a wide range of physical processes (stellar winds, supernovae, radiation pressure, gravity, thermal conduction, radiative cooling, dust extinction etc.) and yet runs quickly enough to allow us to explore broad ranges of different cloud parameters. We compare the results of an extensive set of models with SITELLE observations of a large sample of hii regions in NGC~628 and find very good agreement, particularly for the highest signal-to-noise observations. We show that our approach of modeling individual clouds from first principles (instead of in terms of dimensionless quantities such as the ionization parameter) allows us to avoid long-standing degeneracies in the interpretation of hii region diagnostics and enables us to relate these diagnostics to important physical parameters such as cloud mass or cluster age. Finally, we explore the implications of our models regarding the reliability of simple metallicity diagnostics, the properties of long-lived embedded clusters, and the role played by winds and supernovae in regulating hii region and PDR line emission.
We present a detailed characterization of the population of compact radio-continuum sources in W51 A using subarcsecond VLA and ALMA observations. We analyzed their 2-cm continuum, the recombination lines (RLs) H77$alpha$ and H30$alpha$, and the line
We present radiation-magnetohydrodynamic simulations aimed at studying evolutionary properties of H,{ ormalsize II} regions in turbulent, magnetised, and collapsing molecular clouds formed by converging flows in the warm neutral medium. We focus on t
The article deals with observations of star-forming regions S231-S235 in quasi-thermal lines of ammonia (NH$_3$), cyanoacetylene (HC$_3$N) and maser lines of methanol (CH$_3$OH) and water vapor (H$_2$O). S231-S235 regions is situated in the giant mol
Early type galaxies (ETGs) frequently show emission from warm ionized gas. These Low Ionization Emission Regions (LIERs) were originally attributed to a central, low-luminosity active galactic nuclei. However, the recent discovery of spatially-extend
The ngVLA will create a Galaxy-wide, volume-limited sample of HII regions; solve some long standing problems in the physics of HII regions; and provide an extinction-free star formation tracer in nearby galaxies.