ﻻ يوجد ملخص باللغة العربية
In this paper we determine the limiting distribution of the image of the Eichler--Shimura map or equivalently the limiting joint distribution of the coefficients of the period polynomials associated to a fixed cusp form. The limiting distribution is shown to be the distribution of a certain transformation of two independent random variables both of which are equidistributed on the circle $mathbb{R}/mathbb{Z}$, where the transformation is connected to the additive twist of the cuspidal $L$-function. Furthermore we determine the asymptotic behavior of the zeroes of the period polynomials of a fixed cusp form. We use the method of moments and the main ingredients in the proofs are additive twists of $L$-functions and bounds for both individual and sums of Kloosterman sums.
Let $f$ and $g$ be weight $k$ holomorphic cusp forms and let $S_f(n)$ and $S_g(n)$ denote the sums of their first $n$ Fourier coefficients. Hafner and Ivic [HI], building on Chandrasekharan and Narasimhan [CN], proved asymptotics for $sum_{n leq X} l
We produce nontrivial asymptotic estimates for shifted sums of the form $sum a(h)b(m)c(2m-h)$, in which $a(n),b(n),c(n)$ are un-normalized Fourier coefficients of holomorphic cusp forms. These results are unconditional, but we demonstrate how to stre
We investigate the correspondence between holomorphic automorphic forms on the upper half-plane with complex weight and parabolic cocycles. For integral weights at least 2 this correspondence is given by the Eichler integral. Knopp generalized this t
Period polynomials have long been fruitful tools for the study of values of $L$-functions in the context of major outstanding conjectures. In this paper, we survey some facets of this study from the perspective of Eichler cohomology. We discuss ways
Generalizing a result of cite{Z1991, CPZ} about elliptic modular forms, we give a closed formula for the sum of all Hilbert Hecke eigenforms over a totally real number field with strict class number $1$, multiplied by their period polynomials, as a single product of the Kronecker series.