ﻻ يوجد ملخص باللغة العربية
In this work we investigate the systematic uncertainties that arise from the calculation of the peculiar velocity when estimating the Hubble constant ($H_0$) from gravitational wave standard sirens. We study the GW170817 event and the estimation of the peculiar velocity of its host galaxy, NGC 4993, when using Gaussian smoothing over nearby galaxies. NGC 4993 being a relatively nearby galaxy, at $sim 40 {rm Mpc}$ away, is subject to a significant effect of peculiar velocities. We demonstrate a direct dependence of the estimated peculiar velocity value on the choice of smoothing scale. We show that when not accounting for this systematic, a bias of $sim 200 {rm km s ^{-1}}$ in the peculiar velocity incurs a bias of $sim 4 {rm km s ^{-1} Mpc^{-1}}$ on the Hubble constant. We formulate a Bayesian model that accounts for the dependence of the peculiar velocity on the smoothing scale and by marginalising over this parameter we remove the need for a choice of smoothing scale. The proposed model yields $H_0 = 68.6 ^{+14.0}_{-8.5}~{rm km s^{-1} Mpc^{-1}}$. We demonstrate that under this model a more robust unbiased estimate of the Hubble constant from nearby GW sources is obtained.
We propose a novel approach to accurately pin down the systematics due to the peculiar velocities of galaxies in measuring the Hubble constant from nearby galaxies in current and future gravitational-wave (GW) standard-siren experiments. Given the pr
In this paper, we present the application of a new method measuring Hubble parameter $H(z)$ by using the anisotropy of luminosity distance($d_{L}$) of the gravitational wave(GW) standard sirens of neutron star(NS) binary system. The method has never
Multi-messenger observations of binary neutron star mergers offer a promising path towards resolution of the Hubble constant ($H_0$) tension, provided their constraints are shown to be free from systematics such as the Malmquist bias. In the traditio
The detection of GW170817 in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced LIGO and Virgo detectors observed GW170817, a strong signal from the merge
The Hubble constant ($H_0$) estimated from the local Cepheid-supernova (SN) distance ladder is in 3-$sigma$ tension with the value extrapolated from cosmic microwave background (CMB) data assuming the standard cosmological model. Whether this tension