ﻻ يوجد ملخص باللغة العربية
Low mass stars might offer today the best opportunities to detect and characterise planetary systems, especially those harbouring close-in low mass temperate planets. Among those stars, TRAPPIST-1 is exceptional since it has seven Earth-sized planets, of which three could sustain liquid water on their surfaces. Here we present new and deep ALMA observations of TRAPPIST-1 to look for an exo-Kuiper belt which can provide clues about the formation and architecture of this system. Our observations at 0.88 mm did not detect dust emission, but can place an upper limit of 23$mu$Jy if the belt is smaller than 4 au, and 0.15 mJy if resolved and 100 au in radius. These limits correspond to low dust masses of $sim10^{-5}-10^{-2}$ $M_oplus$, which are expected after 8 Gyr of collisional evolution unless the system was born with a $>20$ $M_oplus$ belt of 100 km-sized planetesimals beyond 40 au or suffered a dynamical instability. This $20$ $M_oplus$ mass upper limit is comparable to the combined mass in TRAPPIST-1 planets, thus it is possible that most of the available solid mass in this system was used to form the known planets. A similar analysis of the ALMA data on Proxima Cen leads us to conclude that a belt born with a mass $gtrsim1$ $M_oplus$ in 100 km-sized planetesimals could explain its putative outer belt at 30 au. We recommend that future characterisations of debris discs around low mass stars should focus on nearby and young systems if possible.
One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets transiting (i.e. passing in front of) a star j
The newly detected TRAPPIST-1 system, with seven low-mass, roughly Earth-sized planets transiting a nearby ultra-cool dwarf, is one of the most important exoplanet discoveries to date. The short baseline of the available discovery observations, howev
The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small
We study the evolution of protoplanetary discs that would have been precursors of a Trappist-1 like system under the action of accretion and external photoevaporation in different radiation environments. Dust grains swiftly grow above the critical si
The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would af