ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted quasar light curves: implications for continuum reverberation mapping of accretion disks

414   0   0.0 ( 0 )
 نشر من قبل James Chan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the advent of high-cadence and multi-band photometric monitoring facilities, continuum reverberation mapping is becoming of increasing importance to measure the physical size of quasar accretion disks. The method is based on the measurement of the time it takes for a signal to propagate from the center to the outer parts of the central engine, assuming the continuum light curve at a given wavelength has a time shift of the order of a few days with respect to light curves obtained at shorter wavelengths. We show that with high-quality light curves, this assumption is not valid anymore and that light curves at different wavelengths are not only shifted in time but also distorted: in the context of the lamp-post model and thin-disk geometry, the multi-band light curves are in fact convolved by a transfer function whose size increase with wavelength. We illustrate the effect with simulated light curves in the LSST ugrizy bands and examine the impact on the delay measurements when using three different methods, namely JAVELIN, CREAM, and PyCS. We find that current accretion disk sizes estimated from JAVELIN and PyCS are underestimated by $sim30%$ and that unbiased measurement are only obtained with methods that properly take the skewed transfer functions into account, as the CREAM code does. With the LSST-like light curves, we expect to achieve measurement errors below $5%$ with typical 2-day photometric cadence.

قيم البحث

اقرأ أيضاً

We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC,2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of $tau propto lambda^{4/3}$. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC,2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC,2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC,2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models.
The determination of the size and geometry of the broad line region (BLR) in active galactic nuclei is one of the major ingredients for determining the mass of the accreting black hole. This can be done by determining the delay between the optical co ntinuum and the flux reprocessed by the BLR, in particular via the emission lines. We propose here that the delay between polarized and unpolarized light can also be used in much the same way to constrain the size of the BLR; we check that meaningful results can be expected from observations using this technique. We use our code STOKES for performing polarized radiative transfer simulations. We determine the response of the central source environment (broad line region, dust torus, polar wind) to fluctuations of the central source that are randomly generated; we then calculate the cross correlation between the simulated polarized flux and the total flux to estimate the time delay that would be provided by observations using the same method. We find that the broad line region is the main contributor to the delay between the polarized flux and the total flux; this delay is independent on the observation wavelength. This validates the use of polarized radiation in the optical/UV band to estimate the geometrical properties of the broad line region in type I AGNs, in which the viewing angle is close to pole-on and the BLR is not obscured by the dust torus.
155 - D. Sluse , M. Tewes 2014
Owing to the advent of large area photometric surveys, the possibility to use broad band photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei, has raised a large interest. We describe here a new method using time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images which is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques which use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.
73 - D. Mudd , P. Martini , Y. Zu 2017
We present accretion disk size measurements for 15 luminous quasars at $0.7 leq z leq 1.9$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which a re derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. From this, we are only able to constrain upper limits on disk sizes, as many are consistent with no lag the 2$sigma$ level. The second method fits the model parameters for the canonical thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. Given our large uncertainties, our measurements are also consistent with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results, that find disk sizes that are a factor of a few ($sim$3) larger than predictions.
Measurements of the physical properties of accretion disks in active galactic nuclei are important for better understanding the growth and evolution of supermassive black holes. We present the accretion disk sizes of 22 quasars from continuum reverbe ration mapping with data from the Dark Energy Survey (DES) standard star fields and the supernova C fields. We construct continuum lightcurves with the textit{griz} photometry that span five seasons of DES observations. These data sample the time variability of the quasars with a cadence as short as one day, which corresponds to a rest frame cadence that is a factor of a few higher than most previous work. We derive time lags between bands with both JAVELIN and the interpolated cross-correlation function method, and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new measurements include disks around black holes with masses as small as $sim10^7$ $M_{odot}$, which have equivalent sizes at 2500AA , as small as $sim 0.1$ light days in the rest frame. We find that most objects have accretion disk sizes consistent with the prediction of the standard thin disk model when we take disk variability into account. We have also simulated the expected yield of accretion disk measurements under various observational scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find that the number of disk measurements would increase significantly if the default cadence is changed from three days to two days or one day.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا