ﻻ يوجد ملخص باللغة العربية
We investigate new-physics contributions to $bto s ellell$ transitions in the context of an effective field theory extension of the Standard Model, including operator mixing at one loop. We identify the few scenarios where a single Wilson coefficient, $C/Lambda^2 sim 1/{rm TeV}^2$, induces a substantial shift in the lepton flavour universality ratios $R_K$ and $R_{K^*}$ at one loop, while evading $Z$-pole precision tests, collider bounds, and other flavour constraints. Good fits to the present data are achieved by a left-handed current operator with quark-flavour indices $(2,2)$ or $(3,3)$, hitherto overlooked. Interestingly, the running of the Standard Model Yukawa matrices gives the dominant effect for these scenarios. We match the favoured effective-theory scenarios to minimal, single-mediator models, which are subject to additional stringent constraints. Notably, we recognise three viable instances of a leptoquark with one coupling to fermions only. If the anomalies were confirmed, it appears that one-loop explanations have good prospects of being directly tested at the LHC.
The deviations with respect to the Standard Model (SM) that are currently observed in $b to s ellell$ transitions (the so-called flavour anomalies) can be interpreted in terms of different New Physics (NP) scenarios within a model-independent effecti
$B$ decays proceeding via $bto cell u$ transitions with $ell=e$ or $mu$ are tree-level processes in the Standard Model. They are used to measure the CKM element $V_{cb}$, as such forming an important ingredient in the determination of e.g. the unitar
The recent measurements of $R_K$, $B_stomu^+mu^-$, a set of CP-averaged angular observables for the $B^0to K^{*0}mu^+mu^-$ decay, and its isospin partner $B^+to K^{*+}mu^+mu^-$ by the LHCb Collaboration, consistently hint at lepton universality viola
We present results of global fits of all relevant experimental data on rare $b to s$ decays. We observe significant tensions between the Standard Model predictions and the data. After critically reviewing the possible sources of theoretical uncertain
We revisit electroweak radiative corrections to Standard Model Effective Field Theory (SMEFT) operators which are relevant for the $B$-meson semileptonic decays. The one-loop matching formulae onto the low-energy effective field theory are provided w