ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of interference effects in the search for flavour-changing neutral current interactions involving the top quark and a photon or a $Z$ boson at the LHC

227   0   0.0 ( 0 )
 نشر من قبل Johannes Erdmann
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Flavour-changing neutral-current interactions of the top quark can be searched for in top-quark pair production with one top quark decaying to an up-type quark and a neutral boson, and they can be searched for in the single production of a top quark in association with such a boson. Both processes interfere if an additional up-type quark is produced in the case of single production. The impact of these interference effects on searches for flavour-changing neutral currents at the LHC is studied for the case where the neutral boson is a photon or a $Z$ boson. Interference effects are found to be smaller than variations of the renormalisation and factorisation scales.



قيم البحث

اقرأ أيضاً

We demonstrate that flavour-changing neutral currents in the top sector, mediated by leptophilic scalars at the electroweak scale, can easily arise in scenarios of new physics, and in particular in composite Higgs models. We moreover show that such i nteractions are poorly constrained by current experiments, while they can be searched for at the LHC in rare top decays and, more generally, in the channels $ppto tS(S)+j$, with $Stoell^+ell^-$. We provide dedicated analyses in this respect, obtaining that cut-off scales as large as $Lambdasim$ 90 TeV can be probed with an integrated luminosity of $mathcal{L} = 150$ fb$^{-1}$.
We investigate the prospects for discovering a top quark decaying into one light Higgs boson along with a charm quark in top quark pair production at the CERN Large Hadron Collider (LHC). A general two Higgs doublet model is adopted to study the sign ature of flavor changing neutral Higgs decay $t to cphi^0$, %or $bar{t} to bar{c}phi^0$ where $phi^0$ could be CP-even ($H^0$) or CP-odd ($A^0$). The dominant physics background is evaluated with realistic acceptance cuts as well as tagging and mistagging efficiencies. For a reasonably large top-charm-Higgs coupling ($lambda_{tc}/lambda_{t} agt 0.09$), the abundance of signal events and the %that our acceptance cuts reduction in physics background allow us to establish a $5sigma$ signal for $M_phi sim 125$ GeV at the LHC with a center of mass energy ($sqrt{s}$) of 8 TeV and an integrated luminosity of 20 fb$^{-1}$. The discovery potential will be greatly enhanced with the full energy of $sqrt{s} = 14$ TeV.
We have applied a microscopic model for single photon emission in neutral current interactions on nucleons and nuclei to determine the number and distributions of such events at the Super-Kamiokande detector, for the flux and beam exposure of the T2K experiment in neutrino mode. These reactions represent an irreducible background in electron-(anti)neutrino appearance measurements aimed at a precise measurement of mixing angle $theta_{13}$ and the $CP$ violating phase. We have obtained a total number of photon events that is twice larger than the one from the NEUT event generator (version 5.1.4.2) used in the analysis of T2K data. Detailed comparisons of energy and angular distributions for the $ u_mu$ and $bar u_mu$ fluxes have also been performed.
We adopt a fully gauge-invariant effective-field-theory approach for parametrizing top-quark flavor-changing-neutral-current interactions. It allows for a global interpretation of experimental constraints (or measurements) and the systematic treatmen t of higher-order quantum corrections. We discuss some recent results obtained at next-to-leading-order accuracy in QCD and perform, at that order, a first global analysis of a subset of the available experimental limits in terms of effective operator coefficients. We encourage experimental collaborations to adopt this approach and extend the analysis by using all information they have prime access to.
We study top-antitop pair production and top spin correlations in a model with an electrically neutral massive gauge boson, Z, at the Large Hadron Collider. In addition to the Standard Model processes, the Z contributes to the top-antitop pair produc tion process in the s-channel. Choosing a kinematical region of top invariant mass around the Z resonance pole, we find sizable deviations of the top-antitop pair production cross section and the top spin correlations from those of the Standard Model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا