ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduced Hall carrier density in the overdoped strange metal regime of cuprate superconductors

383   0   0.0 ( 0 )
 نشر من قبل Carsten Putzke
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Efforts to understand the microscopic origin of superconductivity in the cuprates are dependent on knowledge of the normal state. The Hall number in the low temperature, high field limit $n_{rm H}(0)$ has a particular significance because within conventional transport theory it is simply related to the number of charge carriers, and so its evolution with doping gives crucial information about the nature of the charge transport. Here we report a study of the high field Hall coefficient of the single-layer cuprates Tl$_2$Ba$_2$CuO$_{6+delta}$ (Tl2201) and (Pb/La) doped Bi$_2$Sr$_2$CuO$_{6+delta}$ (Bi2201) which shows how $n_{rm H}(0)$ evolves in the overdoped, so-called strange metal, regime of cuprates. We find that $n_{rm H}(0)$ increases smoothly from $p$ to $1+p$, where $p$ is the number of holes doped into the parent insulating state, over a wide range of doping. The evolution of $n_{rm H}$ correlates with the emergence of the anomalous linear-in-$T$ term in the low-$T$ in-plane resistivity. The results could suggest that quasiparticle decoherence extends to dopings well beyond the pseudogap regime.



قيم البحث

اقرأ أيضاً

We calculate superfluid density for a dirty d-wave superconductor. The effects of impurity scattering are treated within the self-consistent t-matrix approximation, in weak-coupling BCS theory. Working from a realistic tight-binding parameterization of the Fermi surface, we find a superfluid density that is both correlated with T_c and linear in temperature, in good correspondence with recent experiments on overdoped La2-xSrxCuO4.
A comprehensive angle resolved photoemission spectroscopy study of the band structure in single layer cuprates is presented with the aim of uncovering universal trends across different materials. Five different hole- and electron-doped cuprate superc onductors (La$_{1.59}$Eu$_{0.2}$Sr$_{0.21}$CuO$_4$, La$_{1.77}$Sr$_{0.23}$CuO$_4$, Bi$_{1.74}$Pb$_{0.38}$Sr$_{1.88}$CuO$_{6+delta}$, Tl$_{2}$Ba$_{2}$CuO$_{6+delta}$, and Pr$_{1.15}$La$_{0.7}$Ce$_{0.15}$CuO$_{4}$) have been studied with special focus on the bands with predominately $d$-orbital character. Using light polarization analysis, the $e_g$ and $t_{2g}$ bands are identified across these materials. A clear correlation between the $d_{3z^2-r^2}$ band energy and the apical oxygen distance $d_mathrm{A}$ is demonstrated. Moreover, the compound dependence of the $d_{x^2-y^2}$ band bottom and the $t_{2g}$ band top is revealed. Direct comparison to density functional theory (DFT) calculations employing hybrid exchange-correlation functionals demonstrates excellent agreement. We thus conclude that the DFT methodology can be used to describe the global band structure of overdoped single layer cuprates on both the hole and electron doped side.
186 - K. Yang , B. P. Xie , D. W. Shen 2006
We explore the electronic structure in the heavily overdoped regime of the single layer cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta. We found that the nodal quasiparticle behavior is dominated mostly by phonons, while the antinodal quasiparti cle lineshape is dominated by spin fluctuations. Moreover, while long range spin fluctuations diminish at very high doping, the local magnetic fluctuations still dominate the quasiparticle dispersion, and the system exhibits a strange metal behavior in the entire overdoped regime.
In order to investigate the low-energy antiferromagnetic Cu-spin correlation and its relation to the superconductivity, we have performed muon spin relaxation (muSR) measurements using single crystals of the electron-doped high-Tc cuprate Pr_1-x_LaCe _x_CuO_4_ in the overdoped regime. The muSR spectra have revealed that the Cu-spin correlation is developed in the overdoped samples where the superconductivity appears. The development of the Cu-spin correlation weakens with increasing x and is negligibly small in the heavily overdoped sample where the superconductivity almost disappears. Considering that the Cu-spin correlation also exist in the superconducting electron-doped cuprates in the undoped and underdoped regimes [T. Adachi et al., J. Phys. Soc. Jpn. 85, 114716 (2016)], our findings suggest that the mechanism of the superconductivity is related to the low-energy Cu-spin correlation in the entire doping regime of the electron-doped cuprates.
We argue that recent measurements on both the superfluid density and the optical conductivity of high-quality LSCO films can be understood almost entirely within the theory of disordered BCS d-wave superconductors. The large scattering rates deduced from experiments are shown to arise predominantly from weak scatterers, probably the Sr dopants out of the CuO$_2$ plane, and correspond to significant suppression of $T_c$ relative to a pure reference state with the same doping. Our results confirm the conventional viewpoint that the overdoped side of the cuprate phase diagram can be viewed as approaching the BCS weak-coupling description of the superconducting state, with significant many-body renormalization of the plasma frequency. They suggest that, while some of the decrease in $T_c$ with overdoping may be due to weakening of the pairing, disorder plays an essential role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا