ﻻ يوجد ملخص باللغة العربية
Fermi arc states are features of Weyl semimetal (WSM) surfaces which are robust due to the topological character of the bulk band structure. We demonstrate that Fermi arcs may undergo profound restructurings when surfaces of different systems with a well-defined twist angle are tunnel-coupled. The twisted WSM interface supports a moire pattern which may be approximated as a periodic system with large real-space unit cell. States bound to the interface emerge, with interesting consequences for the magneto-oscillations expected when a magnetic field is applied perpendicular to the system surfaces. As the twist angle passes through special arcless angles, for which open Fermi arc states are absent at the interface, Fermi loops of states confined to the interface may break off, without connecting to bulk states of the WSM. We argue that such states have interesting resonance signatures in the optical conductivity of the system in a magnetic field perpendicular to the interface.
Fermi arc surface states are the hallmark of Weyl semimetals, whose identification is usually challenged by their coexistence with gapless bulk states. Surface transport measurements by fabricating setups on the sample boundary provide a natural solu
The Fermi arcs of topological surface states in the three-dimensional multi-Weyl semimetals on surfaces by a continuum model are investigated systematically. We calculated analytically the energy spectra and wave function for bulk quadratic- and cubi
Smooth interfaces of topological systems are known to host massive surface states along with the topologically protected chiral one. We show that in Weyl semimetals these massive states, along with the chiral Fermi arc, strongly alter the form of the
Surface plasmon polaritons in a strained slab of a Weyl semimetal with broken time-reversal symmetry are investigated. It is found that the strain-induced axial gauge field reduces frequencies of these collective modes for intermediate values of the
We theoretically investigate surface plasmon polaritons propagating in the thin-film Weyl semimetals. We show how the properties of surface plasmon polaritons are affected by hybridization between plasmons localized at the two metal-dielectric interf