ترغب بنشر مسار تعليمي؟ اضغط هنا

No-Arbitrage Commodity Option Pricing with Market Manipulation

112   0   0.0 ( 0 )
 نشر من قبل Luciano Campi
 تاريخ النشر 2019
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We design three continuous--time models in finite horizon of a commodity price, whose dynamics can be affected by the actions of a representative risk--neutral producer and a representative risk--neutral trader. Depending on the model, the producer can control the drift and/or the volatility of the price whereas the trader can at most affect the volatility. The producer can affect the volatility in two ways: either by randomizing her production rate or, as the trader, using other means such as spreading false information. Moreover, the producer contracts at time zero a fixed position in a European convex derivative with the trader. The trader can be price-taker, as in the first two models, or she can also affect the volatility of the commodity price, as in the third model. We solve all three models semi--explicitly and give closed--form expressions of the derivative price over a small time horizon, preventing arbitrage opportunities to arise. We find that when the trader is price-taker, the producer can always compensate the loss in expected production profit generated by an increase of volatility by a gain in the derivative position by driving the price at maturity to a suitable level. Finally, in case the trader is active, the model takes the form of a nonzero-sum linear-quadratic stochastic differential game and we find that when the production rate is already at its optimal stationary level, there is an amount of derivative position that makes both players better off when entering the game.



قيم البحث

اقرأ أيضاً

Applying the Cherny-Shiryaev-Yor invariance principle, we introduce a generalized Jarrow-Rudd (GJR) option pricing model with uncertainty driven by a skew random walk. The GJR pricing tree exhibits skewness and kurtosis in both the natural and risk-n eutral world. We construct implied surfaces for the parameters determining the GJR tree. Motivated by Mertons pricing tree incorporating transaction costs, we extend the GJR pricing model to include a hedging cost. We demonstrate ways to fit the GJR pricing model to a market driver that influences the price dynamics of the underlying asset. We supplement our findings with numerical examples.
The no-arbitrage property is widely accepted to be a centerpiece of modern financial mathematics and could be considered to be a financial law applicable to a large class of (idealized) markets. The paper addresses the following basic question: can o ne characterize the class of transformations that leave the law of no-arbitrage invariant? We provide a geometric formalization of this question in a non probabilistic setting of discrete time, the so-called trajectorial models. The paper then characterizes, in a local sense, the no-arbitrage symmetries and illustrates their meaning in a detailed example. Our context makes the result available to the stochastic setting as a special case
The objective of this paper is to introduce the theory of option pricing for markets with informed traders within the framework of dynamic asset pricing theory. We introduce new models for option pricing for informed traders in complete markets where we consider traders with information on the stock price direction and stock return mean. The Black-Scholes-Merton option pricing theory is extended for markets with informed traders, where price processes are following continuous-diffusions. By doing so, the discontinuity puzzle in option pricing is resolved. Using market option data, we estimate the implied surface of the probability for a stock upturn, the implied mean stock return surface, and implied trader information intensity surface.
We develop a robust framework for pricing and hedging of derivative securities in discrete-time financial markets. We consider markets with both dynamically and statically traded assets and make minimal measurability assumptions. We obtain an abstrac t (pointwise) Fundamental Theorem of Asset Pricing and Pricing--Hedging Duality. Our results are general and in particular include so-called model independent results of Acciao et al. (2016), Burzoni et al. (2016) as well as seminal results of Dalang et al. (1990) in a classical probabilistic approach. Our analysis is scenario--based: a model specification is equivalent to a choice of scenarios to be considered. The choice can vary between all scenarios and the set of scenarios charged by a given probability measure. In this way, our framework interpolates between a model with universally acceptable broad assumptions and a model based on a specific probabilistic view of future asset dynamics.
We consider stochastic volatility models under parameter uncertainty and investigate how model derived prices of European options are affected. We let the pricing parameters evolve dynamically in time within a specified region, and formalise the prob lem as a control problem where the control acts on the parameters to maximise/minimise the option value. Through a dual representation with backward stochastic differential equations, we obtain explicit equations for Hestons model and investigate several numerical solutions thereof. In an empirical study, we apply our results to market data from the S&P 500 index where the model is estimated to historical asset prices. We find that the conservative model-prices cover 98% of the considered market-prices for a set of European call options.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا