ترغب بنشر مسار تعليمي؟ اضغط هنا

Composite Dynamics in the Early Universe

51   0   0.0 ( 0 )
 نشر من قبل Luigi Delle Rose
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the occurrence of a strong first-order electroweak phase transition in composite Higgs models. Minimal constructions realising this scenario are based on the coset SO(6)/SO(5) which delivers an extended Higgs sector with an additional scalar. In such models, a two-step phase transition can be obtained with the scalar singlet acquiring a vacuum expectation value at intermediate temperatures. A bonus of the Nambu-Goldstone boson nature of the scalar-sector dynamics is the presence of non-renormalisable Higgs interactions that can trigger additional sources of CP violation needed to realise baryogenesis at the electroweak scale. Another interesting aspect of this scenario is the generation of gravitational wave signatures that can be observed at future space-based interferometers.



قيم البحث

اقرأ أيضاً

199 - Seoktae Koh , Bin Hu 2009
We study the dynamics of a timelike vector field which violates Lorentz invariance when the background spacetime is in an accelerating phase in the early universe. It is shown that a timelike vector field is difficult to realize an inflationary phase , so we investigate the evolution of a vector field within a scalar field driven inflation model. And we calculate the power spectrum of the vector field without considering the metric perturbations. While the time component of the vector field perturbations provides a scale invariant spectrum when $xi = 0$, where $xi$ is a nonminimal coupling parameter, both the longitudinal and transverse perturbations give a scale invariant spectrum when $xi = 1/6$.
The cosmological evolution can modify the dark matter (DM) properties in the early Universe to be vastly different from the properties today. Therefore, the relation between the relic abundance and the DM constraints today needs to be revisited. We p ropose novel textit{transient} annihilations of DM which helps to alleviate the pressure from DM null detection results. As a concrete example, we consider the vector portal DM and focus on the mass evolution of the dark photon. When the Universe cools down, the gauge boson mass can increase monotonically and go across several important thresholds; opening new transient annihilation channels in the early Universe. Those channels are either forbidden or weakened at the late Universe which helps to evade the indirect searches. In particular, the transient resonant channel can survive direct detection (DD) without tuning the DM to be half of the dark photon mass and can be soon tested by future DD or collider experiments. A feature of the scenario is the existence of a light dark scalar.
We suggest the possibility of creation in the early Universe of stable domains of radius a few kilometers wide, formed by coherently excited states of $pi$-mesons. Such domains appear dark to an external observer, since the decay rate of the said coh erent pionic states into photons is vanishingly small. The related thermal insulation of the domains from the outer world could have allowed them to survive till present days. The estimated maximum radius and the period of rotation of such objects turn out to be compatible with those of certain pulsars.
The evolution of the Universe is the ultimate laboratory to study fundamental physics across energy scales that span about 25 orders of magnitude: from the grand unification scale through particle and nuclear physics scales down to the scale of atomi c physics. The standard models of cosmology and particle physics provide the basic understanding of the early and present Universe and predict a series of phase transitions that occurred in succession during the expansion and cooling history of the Universe. We survey these phase transitions, highlighting the equilibrium and non-equilibrium effects as well as their observational and cosmological consequences. We discuss the current theoretical and experimental programs to study phase transitions in QCD and nuclear matter in accelerators along with the new results on novel states of matter as well as on multi- fragmentation in nuclear matter. A critical assessment of similarities and differences between the conditions in the early universe and those in ultra- relativistic heavy ion collisions is presented. Cosmological observations and accelerator experiments are converging towards an unprecedented understanding of the early and present Universe.
Electron-positron annihilation largely occurs in local thermal and chemical equilibrium after the neutrinos fall out of thermal equilibrium and during the Big Bang Nucleosynthesis (BBN) epoch. The effects of this process are evident in BBN yields as well as the relativistic degrees of freedom. We self-consistently calculate the collision integral for electron-positron creation and annihilation using the Klein-Nishina amplitude and appropriate statistical factors for Fermi-blocking and Bose-enhancement. Our calculations suggest that this annihilation freezes out when the photon-electron-positron-baryon plasma temperature is approximately 16 keV, after which its rate drops below the Hubble rate. In the temperature regime near 16 keV, we break the assumption of chemical equilibrium between the electrons, positrons, and photons to independently calculate the evolution of the chemical potentials of the electrons and positrons while computing the associated collision integrals at every time step. We find that the electron and positron chemical potentials deviate from the case with chemical equilibrium. While our results do not affect the interpretation of precision cosmological measurements in elucidating the standard cosmological model, these out of equilibrium effects may be important for testing physics beyond the standard model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا