ترغب بنشر مسار تعليمي؟ اضغط هنا

Second look to the Polyakov Loop Nambu-Jona-Lasinio model at finite baryonic density

79   0   0.0 ( 0 )
 نشر من قبل M. A. Perez-Garcia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisit the Polyakov Loop coupled Nambu-Jona-Lasinio model that maintains the Polyakov loop dynamics in the limit of zero temperature. This is of interest for astrophysical applications in the interior of neutron stars. For this purpose we re-examine the form of the potential for the deconfinement order parameter at finite baryonic densities. Since the modification of this potential at any temperature is formally equivalent to assigning a baryonic charge to gluons, we develop a more general formulation of the present model that cures this spurious effect and is normalized to match the asymptotic behaviour of the QCD equation of state given by $mathcal{O}(alpha_s^2)$ and partial $mathcal{O}(alpha_s^3ln^2alpha_s)$ perturbative results.



قيم البحث

اقرأ أيضاً

We show that the magnitude of the order parameters in Polyakov-Nambu-Jona-Lasinio (PNJL) model, given by the quark condensate and the Polyakov loop, can be used as a criterium to clearly identify, without ambiguities, phases and boundaries of the str ongly interacting matter, namely, the broken/restored chiral symmetry, and confinement/deconfinement regions. This structure is represented by the projection of the order parameters in the temperature-chemical potential plane, which allows a clear identification of pattern changes in the phase diagram. Such a criterium also enables the emergence of a quarkyonic phase even in the two-flavor system. We still show that this new phase diminishes due to the influence of an additional vector-type interaction in the PNJL phase diagrams, and is quite sensitive to the effect of the change of the $T_0$ parameter in the Polyakov potential. Finally, we show that the phases and boundaries constructed by our method indicate that the order parameters should be more strongly correlated, as in the case of entanglement PNJL (EPNJL) model. This result suggests a novel way to pursue further investigation of new interactions between the order parameters in order to improve the PNJL model.
We investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-va cuum effects make the chiral transition sharper. For large theta-vacuum angle the chiral transition becomes first order even if the quark number chemical potential is zero, when the entanglement coupling between the chiral condensate and the Polyakov loop is taken into account. We finally propose a way of circumventing the sign problem on lattice QCD with finite theta.
Thermodynamic properties of strongly interacting matter are investigated using the Polyakov loop enhanced Nambu$-$Jona-Lasinio model along with some modifications to include the hadrons. Various observables are shown to have a close agreement with th e numerical data of QCD on lattice. The advantage of the present scheme over a similar study using a switching function is that here no extra parameters are to be fitted. As a result the present scheme can be easily extended for finite chemical potentials.
We present the thermodynamic properties of strongly interacting matter in finite volume in the framework of Polyakov loop enhanced Nambu$-$Jona-lasinio model within mean field approximation. We considered both the 2 flavor and 2+1 flavor matter. Our primary observation was a qualitative change in the phase transition properties that resulted in the lowering of the temperature corresponding to the critical end point. This would make it favorable for detection in heavy-ion experiments that intend to create high density matter with considerably small temperatures. We further demonstrate the possibility of obtaining chiral symmetry restoration even within the confined phase in finite volumes.
175 - Kenji Fukushima 2008
We present extensive studies on hot and dense quark matter with two light and one heavy flavors in the Nambu--Jona-Lasinio model with the Polyakov loop (so-called PNJL model). First we discuss prescription dependence in choosing the Polyakov loop eff ective potential and propose a simple and rather sensible ansatz. We look over quantitative comparison to the lattice measurement to confirm that the model captures thermodynamic properties correctly. We then analyze the phase structure with changing the temperature, quark chemical potential, quark masses, and coupling constants. We particularly investigate how the effective U_A(1) restoration and the induced vector-channel interaction at finite density would affect the QCD critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا