ﻻ يوجد ملخص باللغة العربية
We revisit the Polyakov Loop coupled Nambu-Jona-Lasinio model that maintains the Polyakov loop dynamics in the limit of zero temperature. This is of interest for astrophysical applications in the interior of neutron stars. For this purpose we re-examine the form of the potential for the deconfinement order parameter at finite baryonic densities. Since the modification of this potential at any temperature is formally equivalent to assigning a baryonic charge to gluons, we develop a more general formulation of the present model that cures this spurious effect and is normalized to match the asymptotic behaviour of the QCD equation of state given by $mathcal{O}(alpha_s^2)$ and partial $mathcal{O}(alpha_s^3ln^2alpha_s)$ perturbative results.
We show that the magnitude of the order parameters in Polyakov-Nambu-Jona-Lasinio (PNJL) model, given by the quark condensate and the Polyakov loop, can be used as a criterium to clearly identify, without ambiguities, phases and boundaries of the str
We investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-va
Thermodynamic properties of strongly interacting matter are investigated using the Polyakov loop enhanced Nambu$-$Jona-Lasinio model along with some modifications to include the hadrons. Various observables are shown to have a close agreement with th
We present the thermodynamic properties of strongly interacting matter in finite volume in the framework of Polyakov loop enhanced Nambu$-$Jona-lasinio model within mean field approximation. We considered both the 2 flavor and 2+1 flavor matter. Our
We present extensive studies on hot and dense quark matter with two light and one heavy flavors in the Nambu--Jona-Lasinio model with the Polyakov loop (so-called PNJL model). First we discuss prescription dependence in choosing the Polyakov loop eff