ﻻ يوجد ملخص باللغة العربية
We performed a series of high-resolution $N$-body simulations to examine whether dark matter candidates in the form of primordial black holes (PBHs) can solve the cusp-core problem in low-mass dwarf galaxies. If some fraction of the dark matter in low-mass dwarf galaxies consists of PBHs and the rest is cold dark matter, dynamical heating of the cold dark matter by the PBHs induces a cusp-to-core transition in the total dark matter profile. The mechanism works for PBHs in the 25-100 M$_{sun}$ mass window, consistent with the LIGO detections, but requires a lower limit on the PBH mass fraction of 1$%$ of the total dwarf galaxy dark matter content. The cusp-to-core transition time-scale is between 1 and 8 Gyr. This time-scale is also a constant multiple of the relaxation time between cold dark matter particles and PBHs, which depends on the mass, the mass fraction and the scale radius of the initial density profile of PBHs. We conclude that dark matter cores occur naturally in halos comprised of cold dark matter and PBHs, without the need to invoke baryonic processes.
Black holes formed in the early universe, prior to the formation of stars, can exist as dark matter and also contribute to the black hole merger events observed in gravitational waves. We set a new limit on the abundance of primordial black holes (PB
Interstellar gas heating is a powerful cosmology-independent observable for exploring the parameter space of primordial black holes (PBHs) formed in the early Universe that could constitute part of the dark matter (DM). We provide a detailed analysis
Recent observations have been discovering new ultra-faint dwarf galaxies as small as $sim20~{rm pc}$ in half-light radius and $sim3~{rm km~s^{-1}}$ in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark mat
The NANOGrav Collaboration has recently published a strong evidence for a stochastic common-spectrum process that may be interpreted as a stochastic gravitational wave background. We show that such a signal can be explained by second-order gravitatio
We investigate a possibility of primordial black hole (PBH) formation with a hierarchical mass spectrum in multiple phases of inflation. As an example, we find that one can simultaneously realize a mass spectrum which has recently attracted a lot of