ﻻ يوجد ملخص باللغة العربية
Matching surfaces is a challenging 3D Computer Vision problem typically addressed by local features. Although a variety of 3D feature detectors and descriptors has been proposed in literature, they have seldom been proposed together and it is yet not clear how to identify the most effective detector-descriptor pair for a specific application. A promising solution is to leverage machine learning to learn the optimal 3D detector for any given 3D descriptor [15]. In this paper, we report a performance evaluation of the detector-descriptor pairs obtained by learning a paired 3D detector for the most popular 3D descriptors. In particular, we address experimental settings dealing with object recognition and surface registration.
3D local feature extraction and matching is the basis for solving many tasks in the area of computer vision, such as 3D registration, modeling, recognition and retrieval. However, this process commonly draws into false correspondences, due to noise,
We tackle the problem of visual localization under changing conditions, such as time of day, weather, and seasons. Recent learned local features based on deep neural networks have shown superior performance over classical hand-crafted local features.
CUDA Unified Memory improves the GPU programmability and also enables GPU memory oversubscription. Recently, two advanced memory features, memory advises and asynchronous prefetch, have been introduced. In this work, we evaluate the new features on t
Research on Offline Handwritten Signature Verification explored a large variety of handcrafted feature extractors, ranging from graphology, texture descriptors to interest points. In spite of advancements in the last decades, performance of such syst
We address the problem of reposing an image of a human into any desired novel pose. This conditional image-generation task requires reasoning about the 3D structure of the human, including self-occluded body parts. Most prior works are either based o