ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex Organic Molecules in Star-Forming Regions of the Magellanic Clouds

278   0   0.0 ( 0 )
 نشر من قبل Marta Sewi{\\l}o
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Large and Small Magellanic Clouds (LMC and SMC), gas-rich dwarf companions of the Milky Way, are the nearest laboratories for detailed studies on the formation and survival of complex organic molecules (COMs) under metal poor conditions. To date, only methanol, methyl formate, and dimethyl ether have been detected in these galaxies - all three toward two hot cores in the N113 star-forming region in the LMC, the only extragalactic sources exhibiting complex hot core chemistry. We describe a small and diverse sample of the LMC and SMC sources associated with COMs or hot core chemistry, and compare the observations to theoretical model predictions. Theoretical models accounting for the physical conditions and metallicity of hot molecular cores in the Magellanic Clouds have been able to broadly account for the existing observations, but fail to reproduce the dimethyl ether abundance by more than an order of magnitude. We discuss future prospects for research in the field of complex chemistry in the low-metallicity environment. The detection of COMs in the Magellanic Clouds has important implications for astrobiology. The metallicity of the Magellanic Clouds is similar to galaxies in the earlier epochs of the Universe, thus the presence of COMs in the LMC and SMC indicates that a similar prebiotic chemistry leading to the emergence of life, as it happened on Earth, is possible in low-metallicity systems in the earlier Universe.



قيم البحث

اقرأ أيضاً

97 - A. Coletta 2020
We have studied four complex organic molecules (COMs), methyl formate ($CH_3OCHO$), dimethyl ether ($CH_3OCH_3$), formamide ($NH_2CHO$), and ethyl cyanide ($C_2H_5CN$), towards a large sample of 39 high-mass star-forming regions representing differen t evolutionary stages, from early to evolved phases. We aim to identify potential correlations between the molecules and to trace their evolutionary sequence through the star formation process. We analysed spectra obtained at 3, 2, and 0.9 mm with the IRAM-30m telescope. We derived the main physical parameters for each species by fitting the molecular lines. We compared them and evaluated their evolution, also taking several other interstellar environments into account. We report detections in 20 sources, revealing a clear dust absorption effect on column densities. Derived abundances are ~$10^{-10}-10^{-7}$ for $CH_3OCHO$ and $CH_3OCH_3$, ~$10^{-12}-10^{-10}$ for $NH_2CHO$, and ~$10^{-11}-10^{-9}$ for $C_2H_5CN$. The abundances of $CH_3OCHO$, $CH_3OCH_3$, and $C_2H_5CN$ are very strongly correlated (r>0.92) across ~4 orders of magnitude. $CH_3OCHO$ and $CH_3OCH_3$ show the strongest correlations in most parameters, and a nearly constant ratio (~1) over a remarkable ~9 orders of magnitude in luminosity for a wide variety of sources: pre-stellar to evolved cores, low- to high-mass objects, shocks, Galactic clouds, and comets. This indicates that COMs chemistry is likely early developed and then preserved through evolved phases. Moreover, the molecular abundances clearly increase with evolution. We consider $CH_3OCHO$ and $CH_3OCH_3$ to be most likely chemically linked: they could e.g. share a common precursor, or be formed one from the other. We propose a general scenario for all COMs, involving a formation in the cold, earliest phases of star formation and a following increasing desorption with the progressive heating of the evolving core.
The Magellanic Clouds (MCs) offer an outstanding variety of young stellar associations, in which large samples of low-mass stars (with masses less than 1 solar mass) currently in the act of formation can be resolved and explored sufficiently with the Hubble Space Telescope. These pre-main sequence (PMS) stars provide a unique snapshot of the star formation process, as it is being recorded for the last 20 Myr, and they give important information on the low-mass Initial Mass Function (IMF) of their host environments. We present the latest results from observations with the Advanced Camera for Surveys (ACS) of such star-forming regions in the MCs, and discuss the importance of Hubble}for a comprehensive collection of substantial information on the most recent low-mass star formation and the low-mass IMF in the MCs.
103 - B. Lefloch 2017
We report on a systematic search for oxygen-bearing Complex Organic Molecules (COMs) in the Solar-like protostellar shock region L1157-B1, as part of the IRAM Large Program Astrochemical Surveys At IRAM (ASAI). Several COMs are unambiguously detected , some for the first time, such as ketene H$_2$CCO, dimethyl ether (CH$_3$OCH$_3$) and glycolaldehyde (HCOCH$_2$OH), and others firmly confirmed, such as formic acid (HCOOH) and ethanol (C$_2$H$_5$OH). Thanks to the high sensitivity of the observations and full coverage of the 1, 2 and 3mm wavelength bands, we detected numerous (10--125) lines from each of the detected species. Based on a simple rotational diagram analysis, we derive the excitation conditions and the column densities of the detected COMs. Combining our new results with those previously obtained towards other protostellar objects, we found a good correlation between ethanol, methanol and glycolaldehyde. We discuss the implications of these results on the possible formation routes of ethanol and glycolaldehyde.
Almost 200 different species have been detected in the interstellar medium (ISM) during the last decades, revealing not only simple species but complex molecules with more than 6 atoms. Other exotic compounds, like the weakly-bound dimer (H2)2, have also been detected in astronomical sources like Jupiter. We aim at detecting for the first time the CO-H2 van der Waals complex in the ISM, which if detected can be a sensitive indicator for low temperatures. We use the IRAM30m telescope, located in Pico Veleta (Spain), to search for the CO-H2 complex in a cold, dense core in TMC-1C (with a temperature of 10 K). All the brightest CO-H2 transitions in the 3 mm (80-110 GHz) band have been observed with a spectral resolution of 0.5-0.7 km/s, reaching a rms noise level of 2 mK. The simultaneous observation of a broad frequency band, 16 GHz, has allowed us to conduct a serendipitous spectral line survey. No lines belonging to the CO-H2 complex have been detected. We have set up a new, more stringent upper limit for its abundance to be [CO-H2]/[CO] = 5x10^{-6}, while we expect the abundance of the complex to be in the range 10^{-8}-10^{-3}. The spectral line survey has allowed us to detect 75 lines associated with 41 different species (including isotopologues). We detect a number of complex organic species, e.g. methyl cyanide (CH3CN), methanol (CH3OH), propyne (CH3CCH) and ketene (CH2CO), associated with cold gas (excitation temperatures about 7 K), confirming the presence of these complex species not only in warm objects but also in cold regimes.
251 - B.Lefloch , C.Vastel , S.Viti 2016
As part of the Large Program ASAI (Astrochemical Surveys At IRAM), we have used the IRAM 30m telescope to lead a systematic search for the emission of rotational transitions of P-bearing species between 80 and 350 GHz towards L1157-B1, a shock positi on in the solar-type star forming region L1157. We report the detection of several transitions of PN and, for the first time, of prebiotic molecule PO. None of these species are detected towards the driving protostar of the outflow L1157-mm. Analysis of the line profiles shows that PN arises from the outflow cavity, where SiO, a strong shock tracer, is produced. Radiative transfer analysis yields an abundance of 2.5e-9 and 0.9e-9 for PO and PN, respectively. These results imply a strong depletion (approx 100) of Phosphorus in the quiescent cloud gas. Shock modelling shows that atomic N plays a major role in the chemistry of PO and PN. The relative abundance of PO and PN brings constraints both on the duration of the pre-shock phase, which has to be about 1 Myr, and on the shock parameters. The maximum temperature in the shock has to be larger than 4000K, which implies a shock velocity of 40 km/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا