ﻻ يوجد ملخص باللغة العربية
The propagation of uncertainties in reaction cross sections and rates of neutron-, proton-, and $alpha$-induced reactions into the final isotopic abundances obtained in nucleosynthesis models is an important issue in studies of nucleosynthesis and Galactic Chemical Evolution. We developed a Monte Carlo method to allow large-scale postprocessing studies of the impact of nuclear uncertainties on nucleosynthesis. Temperature-dependent rate uncertainties combining realistic experimental and theoretical uncertainties are used. The importance of contributions of cross sections of reactions on excited states of the nuclear targets, which have weights different from from the thermal Boltzmann population factors, is explained. From detailed statistical analyses of the Monte Carlo data uncertainties in the final abundances are derived as probability density distributions. Furthermore, based on rate and abundance correlations an automated procedure identifies the most important reactions in complex flow patterns from superposition of many zones or tracers. The method already has been applied to a number of nucleosynthesis processes.
The s-process, a production mechanism based on slow-neutron capture during stellar evolution, is the origin of about half the elements heavier than iron. Abundance predictions for s-process nucleosynthesis depend strongly on the relevant neutron-capt
We investigated the impact of uncertainties in neutron-capture and weak reactions (on heavy elements) on the s-process nucleosynthesis in low-mass stars using a Monte-Carlo based approach. We performed extensive nuclear reaction network calculations
The main s-process taking place in low mass stars produces about half of the elements heavier than iron. It is therefore very important to determine the importance and impact of nuclear physics uncertainties on this process. We have performed extensi
Thermonuclear supernovae originating from the explosion of a white dwarf accreting mass from a companion star have been suggested as a site for the production of $p$ nuclides. Such nuclei are produced during the explosion, in layers enriched with see
The propagation of uncertainties in reaction cross sections and rates of neutron-, proton-, and alpha-induced reactions into the final isotopic abundances obtained in nucleosynthesis models is an important issue in studies of nucleosynthesis and Gala