ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo variations as a tool to assess nuclear physics uncertainties in nucleosynthesis studies

75   0   0.0 ( 0 )
 نشر من قبل Thomas Rauscher
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Rauscher




اسأل ChatGPT حول البحث

The propagation of uncertainties in reaction cross sections and rates of neutron-, proton-, and $alpha$-induced reactions into the final isotopic abundances obtained in nucleosynthesis models is an important issue in studies of nucleosynthesis and Galactic Chemical Evolution. We developed a Monte Carlo method to allow large-scale postprocessing studies of the impact of nuclear uncertainties on nucleosynthesis. Temperature-dependent rate uncertainties combining realistic experimental and theoretical uncertainties are used. The importance of contributions of cross sections of reactions on excited states of the nuclear targets, which have weights different from from the thermal Boltzmann population factors, is explained. From detailed statistical analyses of the Monte Carlo data uncertainties in the final abundances are derived as probability density distributions. Furthermore, based on rate and abundance correlations an automated procedure identifies the most important reactions in complex flow patterns from superposition of many zones or tracers. The method already has been applied to a number of nucleosynthesis processes.



قيم البحث

اقرأ أيضاً

The s-process, a production mechanism based on slow-neutron capture during stellar evolution, is the origin of about half the elements heavier than iron. Abundance predictions for s-process nucleosynthesis depend strongly on the relevant neutron-capt ure and $beta$-decay rates, as well as on the details of the stellar model being considered. Here, we have used a Monte-Carlo approach to evaluate the nuclear uncertainty in s-process nucleosynthesis. We considered the helium burning of massive stars for the weak s-process and low-mass asymptotic-giant-branch stars for the main s-process. Our calculations include a realistic and general prescription for the temperature dependent uncertainty for the reaction cross sections. We find that the adopted uncertainty for (${rm n},gamma$) rates, tens of per cent on average, effects the production of s-process nuclei along the line of $beta$-stability, and that the uncertainties in $beta$-decay from excited state contributions, has the strongest impact on branching points.
We investigated the impact of uncertainties in neutron-capture and weak reactions (on heavy elements) on the s-process nucleosynthesis in low-mass stars using a Monte-Carlo based approach. We performed extensive nuclear reaction network calculations that include newly evaluated temperature-dependent upper and lower limits for the individual reaction rates. Our sophisticated approach is able to evaluate the reactions that impact more significantly the final abundances. We found that beta-decay rate uncertainties affect typically nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are approximately 50%.
The main s-process taking place in low mass stars produces about half of the elements heavier than iron. It is therefore very important to determine the importance and impact of nuclear physics uncertainties on this process. We have performed extensi ve nuclear reaction network calculations using individual and temperature-dependent uncertainties for reactions involving elements heavier than iron, within a Monte Carlo framework. Using this technique, we determined the uncertainty in the main s-process abundance predictions due to nuclear uncertainties link to weak interactions and neutron captures on elements heavier than iron. We also identified the key nuclear reactions dominating these uncertainties. We found that $beta$-decay rate uncertainties affect only a few nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are in general small (less than 50%). Three key reactions, nevertheless, stand out because they significantly affect the uncertainties of a large number of nuclides. These are $^{56}$Fe(n,$gamma$), $^{64}$Ni(n,$gamma$), and $^{138}$Ba(n,$gamma$). We discuss the prospect of reducing uncertainties in the key reactions identified in this study with future experiments.
Thermonuclear supernovae originating from the explosion of a white dwarf accreting mass from a companion star have been suggested as a site for the production of $p$ nuclides. Such nuclei are produced during the explosion, in layers enriched with see d nuclei coming from prior strong $s$ processing. These seeds are transformed to proton-richer isotopes mainly by photodisintegration reactions. Several thousand trajectories from a 2D explosion model were used in a Monte Carlo approach. Temperature-dependent uncertainties were assigned individually to thousands of rates varied simultaneously in post-processing in an extended nuclear reaction network. The uncertainties in the final nuclear abundances originating from uncertainties in the astrophysical reaction rates were determined. In addition to the 35 classical $p$ nuclides, abundance uncertainties were also determined for the radioactive nuclides $^{92}$Nb, $^{97,98}$Tc, $^{146}$Sm, and for the abundance ratios $Y$(${}^{92}$Mo)/$Y$(${}^{94}$Mo), $Y$(${}^{92}$Nb)/$Y$(${}^{92}$Mo), $Y$(${}^{97}$Tc)/$Y$(${}^{98}$Ru), $Y$(${}^{98}$Tc)/$Y$(${}^{98}$Ru), and $Y$(${}^{146}$Sm)/$Y$(${}^{144}$Sm), important for Galactic Chemical Evolution studies. Uncertainties found were generally lower than a factor of two, although most nucleosynthesis flows mainly involve predicted rates with larger uncertainties. The main contribution to the total uncertainties comes from a group of trajectories with high peak density originating from the interior of the exploding white dwarf. The distinction between low-density and high-density trajectories allows more general conclusions to be drawn, also applicable to other simulations of white dwarf explosions.
The propagation of uncertainties in reaction cross sections and rates of neutron-, proton-, and alpha-induced reactions into the final isotopic abundances obtained in nucleosynthesis models is an important issue in studies of nucleosynthesis and Gala ctic Chemical Evolution. We developed a Monte Carlo method to allow large-scale postprocessing studies of the impact of nuclear uncertainties on nucleosynthesis. Temperature-dependent rate uncertainties combining realistic experimental and theoretical uncertainties are used. From detailed statistical analyses uncertainties in the final abundances are derived as probability density distributions. Furthermore, based on rate and abundance correlations an automated procedure identifies the most important reactions in complex flow patterns from superposition of many zones or tracers. The method so far was already applied to a number of nucleosynthesis processes. Here we focus on the production of p-nuclei in white dwarfs exploding as thermonuclear (type Ia) supernovae. We find generally small uncertainties in the final abundances despite of the dominance of theoretical nuclear uncertainties. A separate analysis of low- and high-density regions indicates that the total uncertainties are dominated by the high-density regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا