ﻻ يوجد ملخص باللغة العربية
The existence of the exclusion zone (EZ), a layer of water in which plastic microspheres are repelled from hydrophilic surfaces, has now been independently demonstrated by several groups. A better understanding of the mechanisms which generate EZs would help with understanding the possible importance of EZs in biology and in engineering applications such as filtration and microfluidics. Here we review the experimental evidence for EZ phenomena in water and the major theories that have been proposed. We review experimental results from birefringence, neutron radiography, nuclear magnetic resonance, and other studies. Pollack and others have theorized that water in the EZ exists has a different structure than bulk water, and that this accounts for the EZ. We present several alternative explanations for EZs and argue that Schurrs theory based on diffusiophoresis presents a compelling alternative explanation for the core EZ phenomenon. Among other things, Schurrs theory makes predictions about the growth of the EZ with time which have been confirmed by Florea et al. and others. We also touch on several possible confounding factors that make experimentation on EZs difficult, such as charged surface groups, dissolved solutes, and adsorbed nanobubbles.
We characterize the water repartition within the partially saturated (two-phase) zone (PSZ) during evaporation out of mixed wettable porous media by controlling the wettability of glass beads, their sizes, and as well the surrounding relative humidit
In the present paper we performed the analysis of available data on structural, thermodynamic and mechanical properties of B6O. Although the compound is known for half a century and has been extensively studied, many properties of this boron-rich sol
Elastin is a structural protein with outstanding mechanical properties (e.g., elasticity and resilience) and biologically relevant functions (e.g., triggering responses like cell adhesion or chemotaxis). It is formed from its precursor tropoelastin,
Over the years, plenty of classical interaction potentials for water have been developed and tested against structural, dynamical and thermodynamic properties. On the other hands, it has been recently observed (F. Martelli et. al, textit{ACS Nano}, t
The magnitude of the work function to bring an electron from a metal into the exclusion zone water layer making hydrophilic contact with the metallic interface is theoretically computed. The agreement with recent experimental measurements is satisfactory.