ﻻ يوجد ملخص باللغة العربية
The local expansion rate of the Universe is parametrized by the Hubble constant, $H_0$, the ratio between recession velocity and distance. Different techniques lead to inconsistent estimates of $H_0$. Observations of Type Ia supernovae (SNe) can be used to measure $H_0$, but this requires an external calibrator to convert relative distances to absolute ones. We use the angular diameter distance to strong gravitational lenses as a suitable calibrator, which is only weakly sensitive to cosmological assumptions. We determine the angular diameter distances to two gravitational lenses, $810^{+160}_{-130}$ and $1230^{+180}_{-150}$~Mpc, at redshifts of $z=0.295$ and $0.6304$. Using these absolute distances to calibrate 740 previously-measured relative distances to SNe, we measure the Hubble constant to be $H_0=82.4^{+8.4}_{-8.3} ~{rm km,s^{-1},Mpc^{-1}}$.
The detection of GW170817 in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced LIGO and Virgo detectors observed GW170817, a strong signal from the merge
We present a measurement of the Hubble constant $H_0$ from surface brightness fluctuation (SBF) distances for 63 bright, mainly early-type galaxies out to 100 Mpc observed with the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Te
Progressive increases in the precision of the Hubble-constant measurement via Cepheid-calibrated Type Ia supernovae (SNe Ia) have shown a discrepancy of $sim 4.4sigma$ with the current value inferred from Planck satellite measurements of the cosmic m
The Hubble constant ($H_0$) measures the current expansion rate of the Universe, and plays a fundamental role in cosmology. Tremendous effort has been dedicated over the past decades to measure $H_0$. Notably, Planck cosmic microwave background (CMB)
We perform a statistical standard siren analysis of GW170817. Our analysis does not utilize knowledge of NGC 4993 as the unique host galaxy of the optical counterpart to GW170817. Instead, we consider each galaxy within the GW170817 localization regi