ﻻ يوجد ملخص باللغة العربية
We study the Biswas-Chatterjee-Sen (BCS) model, also known as the KCOD (Kinetic Continuous Opinion Dynamics) model on quasiperiodic lattices by using Kinetic Monte Carlo simulations and Finite Size Scaling technique. Our results are consistent with a continuous phase transition, controlled by an external noise. We obtained the order parameter $M$, defined as the averaged opinion, the fourth-order Binder cumulant $U$, and susceptibility $chi$ as functions of the noise parameter. We estimated the critical noises for Penrose, and Ammann-Beenker lattices. We also considered 7-fold and 9-fold quasiperiodic lattices and estimated the respective critical noises as well. Irrespective of rotational and translational long-range order of the lattice, the system falls in the same universality class of the two-dimensional Ising model. Quasiperiodic order is irrelevant and it does not change any critical exponents for BCS model.
On Archimedean lattices, the Ising model exhibits spontaneous ordering. Three examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition i
The critical properties of the spin-1 two-dimensional Blume-Capel model on directed and undi- rected random lattices with quenched connectivity disorder is studied through Monte Carlo simulations. The critical temperature, as well as the critical poi
Corrections to scaling in the two-dimensional scalar phi^4 model are studied based on non-perturbative analytical arguments and Monte Carlo (MC) simulation data for different lattice sizes L (from 4 to 1536) and different values of the phi^4 coupling
We introduce a model for diffusion of two classes of particles ($A$ and $B$) with priority: where both species are present in the same site the motion of $A$s takes precedence over that of $B$s. This describes realistic situations in wireless and com
When a quantum many-particle system exists on a randomly diluted lattice, its intrinsic thermal and quantum fluctuations coexist with geometric fluctuations due to percolation. In this paper, we explore how the interplay of these fluctuations influen