ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum simulations of excited states with active-space downfolded Hamiltonians

115   0   0.0 ( 0 )
 نشر من قبل Karol Kowalski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many-body techniques based on the double unitary coupled cluster ansatz (DUCC) can be used to downfold electronic Hamiltonians into low-dimensional active spaces. It can be shown that the resulting dimensionality reduced Hamiltonians are amenable for quantum computing. Recent studies performed for several benchmark systems using quantum phase estimation (QPE) algorithms demonstrated that these formulations can recover a significant portion of ground-state dynamical correlation effects that stem from the electron excitations outside of the active space. These results have also been confirmed in studies of ground-state potential energy surfaces using quantum simulators. In this letter, we study the effectiveness of the DUCC formalism in describing excited states. We also emphasize the role of the QPE formalism and its stochastic nature in discovering/identifying excited states or excited-state processes in situations when the knowledge about the true configurational structure of a sought after excited state is limited or postulated (due to the specific physics driving excited-state processes of interest). In this context, we can view the QPE algorithm as an engine for verifying various hypotheses for excited-state processes and providing statistically meaningful results that correspond to the electronic state(s) with the largest overlap with a postulated configurational structure. We illustrate these ideas on examples of strongly correlated molecular systems, characterized by small energy gaps and high density of quasi-degenerate states around the Fermi level.



قيم البحث

اقرأ أيضاً

Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One example of such a hybrid quantum-classical approach is the variational quantum eigensolver (VQE) built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed among the candidates for first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even non-systematic decoherence errors by introducing an exactly solvable channel model of variational state preparation. Moreover, we show how variational quantum-classical approaches fit in a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions with additional classical resources. We demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error correction codes.
The calculation of excited state energies of electronic structure Hamiltonians has many important applications, such as the calculation of optical spectra and reaction rates. While low-depth quantum algorithms, such as the variational quantum eigenva lue solver (VQE), have been used to determine ground state energies, methods for calculating excited states currently involve the implementation of high-depth controlled-unitaries or a large number of additional samples. Here we show how overlap estimation can be used to deflate eigenstates once they are found, enabling the calculation of excited state energies and their degeneracies. We propose an implementation that requires the same number of qubits as VQE and at most twice the circuit depth. Our method is robust to control errors, is compatible with error-mitigation strategies and can be implemented on near-term quantum computers.
Quantum simulations are becoming an essential tool for studying complex phenomena, e.g. quantum topology, quantum information transfer, and relativistic wave equations, beyond the limitations of analytical computations and experimental observations. To date, the primary resources used in proof-of-principle experiments are collections of qubits, coherent states or multiple single-particle Fock states. Here we show the first quantum simulation performed using genuine higher-order Fock states, with two or more indistinguishable particles occupying the same bosonic mode. This was implemented by interfering pairs of Fock states with up to five photons on an interferometer, and measuring the output states with photon-number-resolving detectors. Already this resource-efficient demonstration reveals new topological matter, simulates non-linear systems and elucidates a perfect quantum transfer mechanism which can be used to transport Majorana fermions.
74 - Hayato Goto , Taro Kanao 2020
Adiabatic quantum computation (AQC), which is particularly useful for combinatorial optimization, becomes more powerful by using excited states, instead of ground states. However, the excited-state AQC is prone to errors due to dissipation. Here we p ropose the excited-state AQC started with the most stable state, i.e., the vacuum state. This counterintuitive approach becomes possible by using a driven quantum system, or more precisely, a network of Kerr-nonlinear parametric oscillators (KPOs). By numerical simulations, we show that some hard instances, where standard ground-state AQC with KPOs fails to find their optimal solutions, can be solved by the present approach, where nonadiabatic transitions are rather utilized. We also show that the use of the vacuum state as an initial state leads to robustness against errors due to dissipation, as expected, compared to the use of a really excited (nonvacuum) state as an initial state. Thus, the present work offers new possibilities for quantum computation and driven quantum systems.
Configuration-interaction-type calculations on electronic and vibrational structure are often the method of choice for the reliable approximation of many-particle wave functions and energies. The exponential scaling, however, limits their application range. An efficient approximation to the full configuration interaction solution can be obtained with the density matrix renormalization group (DMRG) algorithm without a restriction to a predefined excitation level. In a standard DMRG implementation, however, excited states are calculated with a ground-state optimization in the space orthogonal to all lower lying wave function solutions. A trivial parallelization is therefore not possible and the calculation of highly excited states becomes prohibitively expensive, especially in regions with a high density of states. Here, we introduce two variants of the density matrix renormalization group algorithm that allow us to target directly specific energy regions and therefore highly excited states. The first one, based on shift-and-invert techniques, is particularly efficient for low-lying states, but is not stable in regions with a high density of states. The second one, based on the folded auxiliary operator, is less efficient, but more accurate in targeting high-energy states. We apply the algorithm to the solution of the nuclear Schroedinger equation, but emphasize that it can be applied to the diagonalization of general Hamiltonians as well, such as the electronic Coulomb Hamiltonian to address X-ray spectra. In combination with several root-homing algorithms and a stochastic sampling of the determinant space, excited states of interest can be adequately tracked and analyzed during the optimization. We demonstrate that we can accurately calculate prominent spectral features of large molecules such as the sarcosyn-glycine dipeptide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا