ترغب بنشر مسار تعليمي؟ اضغط هنا

Two years of non-thermal emission from the binary neutron star merger GW170817: rapid fading of the jet afterglow and first constraints on the kilonova fastest ejecta

137   0   0.0 ( 0 )
 نشر من قبل Aprajita Hajela
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Chandra and VLA observations of GW170817 at ~521-743 days post merger, and a homogeneous analysis of the entire Chandra data set. We find that the late-time non-thermal emission follows the expected evolution from an off-axis relativistic jet, with a steep temporal decay $F_{ u}propto t^{-1.95pm0.15}$ and a simple power-law spectrum $F_{ u}propto u^{-0.575pm0.007}$. We present a new method to constrain the merger environment density based on diffuse X-ray emission from hot plasma in the host galaxy and we find $nle 9.6 times 10^{-3},rm{cm^{-3}}$. This measurement is independent from inferences based on the jet afterglow modeling and allows us to partially solve for model degeneracies. The updated best-fitting model parameters with this density constraint are a fireball kinetic energy $E_0 = 1.5_{-1.1}^{+3.6}times 10^{49},rm{erg}$ ($E_{iso}= 2.1_{-1.5}^{+6.4}times10^{52}, rm{erg}$), jet opening angle $theta_{0}= 5.9^{+1.0}_{-0.7},rm{deg}$ with characteristic Lorentz factor $Gamma_j = 163_{-43}^{+23}$, expanding in a low-density medium with $n_0 = 2.5_{-1.9}^{+4.1} times 10^{-3}, rm{cm^{-3}}$ and viewed $theta_{obs} = 30.4^{+4.0}_{-3.4}, rm{deg}$ off-axis. The synchrotron emission originates from a power-law distribution of electrons with $p=2.15^{+0.01}_{-0.02}$. The shock microphysics parameters are constrained to $epsilon_{rm{e}} = 0.18_{-0.13}^{+0.30}$ and $epsilon_{rm{B}}=2.3_{-2.2}^{+16.0} times 10^{-3}$. We investigate the presence of X-ray flares and find no statistically significant evidence of $ge2.5sigma$ of temporal variability at any time. Finally, we use our observations to constrain the properties of synchrotron emission from the deceleration of the fastest kilonova ejecta with energy $E_k^{KN}propto (Gammabeta)^{-alpha}$ into the environment, finding that shallow stratification indexes $alphale6$ are disfavored.

قيم البحث

اقرأ أيضاً

We present a simple analytic model, that captures the key features of the emission of radiation from material ejected by the merger of neutron stars (NS), and construct the multi-band and bolometric luminosity light curves of the transient associated with GW170817, AT,2017gfo, using all available data. The UV to IR emission is shown to be consistent with a single $approx0.05$,M$_odot$ component ejecta, with a power-law velocity distribution between $approx 0.1,c$ and $>0.3,c$, a low opacity, {$kappa<1$,cm$^2$,g$^{-1}$}, and a radioactive energy release rate consistent with an initial $Y_{rm e}<0.4$. The late time spectra require an opacity of $kappa_ uapprox0.1$,cm$^2$,g$^{-1}$ at 1 to $2mu$m. If this opacity is provided entirely by Lanthanides, their implied mass fraction is $X_{rm Ln}approx10^{-3}$, approximately 30 times below the value required to account for the solar abundance. The inferred value of $X_{rm Ln}$ is uncertain due to uncertainties in the estimates of IR opacities of heavy elements, which also do not allow the exclusion of a significant contribution to the opacity by other elements (the existence of a slower ejecta rich in Lanthanides, that does not contribute significantly to the luminosity, can also not be ruled out). The existence of a relatively massive, $approx 0.05$,M$_odot$, ejecta with high velocity and low opacity is in tension with the results of numerical simulations of NS mergers.
We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron s tar merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter ($13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $gtrsim 10^{48}$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $gtrsim 20^{circ}$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $sim 10^{49}-10^{50}$ erg that exploded in a uniform density environment with $nsim 10^{-4}-10^{-2}$ cm$^{-3}$, viewed at an angle of $sim 20^{circ}-40^{circ}$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $sim 5-10$ years that will remain detectable for decades with next-generation radio facilities, making GW,170817 a compelling target for long-term radio monitoring.
The binary neutron star (BNS) merger GW170817 was the first astrophysical source detected in gravitational waves and multi-wavelength electromagnetic radiation. The almost simultaneous observation of a pulse of gamma-rays proved that BNS mergers are associated with at least some short gamma-ray bursts (GRBs). However, the gamma-ray pulse was faint, casting doubts on the association of BNS mergers with the luminous, highly relativistic outflows of canonical short GRBs. Here we show that structured jets with a relativistic, energetic core surrounded by slower and less energetic wings produce afterglow emission that brightens characteristically with time, as recently seen in the afterglow of GW170817. Initially, we only see the relatively slow material moving towards us. As time passes, larger and larger sections of the outflow become visible, increasing the luminosity of the afterglow. The late appearance and increasing brightness of the multi-wavelength afterglow of GW170817 allow us to constrain the geometry of its ejecta and thus reveal the presence of an off-axis jet pointing about 30 degrees away from Earth. Our results confirm a single origin for BNS mergers and short GRBs: GW170817 produced a structured outflow with a highly relativistic core and a canonical short GRB. We did not see the bright burst because it was beamed away from Earth. However, approximately one in 20 mergers detected in gravitational waves will be accompanied by a bright, canonical short GRB.
On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was asso ciated with the early-type galaxy NGC 4993 at a distance of just $sim$40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of $sim$2 kpc away from the galaxys center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from the binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxys star formation history, provided the stellar populations are older than 1 Gyr.
Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and textit{Fermi}/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard textit{Insight}-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area ($sim$1000 cm$^2$) and microsecond time resolution in 0.2-5 MeV. In addition, textit{Insight}-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although it did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, textit{Insight}-HXMT/HE provides one of the most stringent constraints (~10$^{-7}$ to 10$^{-6}$ erg/cm$^2$/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of textit{Insight}-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا