ﻻ يوجد ملخص باللغة العربية
With advancements of deep learning techniques, it is now possible to generate super-realistic images and videos, i.e., deepfakes. These deepfakes could reach mass audience and result in adverse impacts on our society. Although lots of efforts have been devoted to detect deepfakes, their performance drops significantly on previously unseen but related manipulations and the detection generalization capability remains a problem. Motivated by the fine-grained nature and spatial locality characteristics of deepfakes, we propose Locality-Aware AutoEncoder (LAE) to bridge the generalization gap. In the training process, we use a pixel-wise mask to regularize local interpretation of LAE to enforce the model to learn intrinsic representation from the forgery region, instead of capturing artifacts in the training set and learning superficial correlations to perform detection. We further propose an active learning framework to select the challenging candidates for labeling, which requires human masks for less than 3% of the training data, dramatically reducing the annotation efforts to regularize interpretations. Experimental results on three deepfake detection tasks indicate that LAE could focus on the forgery regions to make decisions. The analysis further shows that LAE outperforms the state-of-the-arts by 6.52%, 12.03%, and 3.08% respectively on three deepfake detection tasks in terms of generalization accuracy on previously unseen manipulations.
DeepFake detection has so far been dominated by ``artifact-driven methods and the detection performance significantly degrades when either the type of image artifacts is unknown or the artifacts are simply too hard to find. In this work, we present a
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns. Recently, how to detect such forgery contents has become a hot research topic and many deepfake detection methods have been proposed. Most of them mo
Existing deepfake-detection methods focus on passive detection, i.e., they detect fake face images via exploiting the artifacts produced during deepfake manipulation. A key limitation of passive detection is that it cannot detect fake faces that are
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-sour
Face forgery by deepfake is widely spread over the internet and this raises severe societal concerns. In this paper, we propose a novel video transformer with incremental learning for detecting deepfake videos. To better align the input face images,