ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Generalizable Deepfake Detection with Locality-aware AutoEncoder

102   0   0.0 ( 0 )
 نشر من قبل Mengnan Du
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With advancements of deep learning techniques, it is now possible to generate super-realistic images and videos, i.e., deepfakes. These deepfakes could reach mass audience and result in adverse impacts on our society. Although lots of efforts have been devoted to detect deepfakes, their performance drops significantly on previously unseen but related manipulations and the detection generalization capability remains a problem. Motivated by the fine-grained nature and spatial locality characteristics of deepfakes, we propose Locality-Aware AutoEncoder (LAE) to bridge the generalization gap. In the training process, we use a pixel-wise mask to regularize local interpretation of LAE to enforce the model to learn intrinsic representation from the forgery region, instead of capturing artifacts in the training set and learning superficial correlations to perform detection. We further propose an active learning framework to select the challenging candidates for labeling, which requires human masks for less than 3% of the training data, dramatically reducing the annotation efforts to regularize interpretations. Experimental results on three deepfake detection tasks indicate that LAE could focus on the forgery regions to make decisions. The analysis further shows that LAE outperforms the state-of-the-arts by 6.52%, 12.03%, and 3.08% respectively on three deepfake detection tasks in terms of generalization accuracy on previously unseen manipulations.



قيم البحث

اقرأ أيضاً

DeepFake detection has so far been dominated by ``artifact-driven methods and the detection performance significantly degrades when either the type of image artifacts is unknown or the artifacts are simply too hard to find. In this work, we present a n alternative approach: Identity-Driven DeepFake Detection. Our approach takes as input the suspect image/video as well as the target identity information (a reference image or video). We output a decision on whether the identity in the suspect image/video is the same as the target identity. Our motivation is to prevent the most common and harmful DeepFakes that spread false information of a targeted person. The identity-based approach is fundamentally different in that it does not attempt to detect image artifacts. Instead, it focuses on whether the identity in the suspect image/video is true. To facilitate research on identity-based detection, we present a new large scale dataset ``Vox-DeepFake, in which each suspect content is associated with multiple reference images collected from videos of a target identity. We also present a simple identity-based detection algorithm called the OuterFace, which may serve as a baseline for further research. Even trained without fake videos, the OuterFace algorithm achieves superior detection accuracy and generalizes well to different DeepFake methods, and is robust with respect to video degradation techniques -- a performance not achievable with existing detection algorithms.
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns. Recently, how to detect such forgery contents has become a hot research topic and many deepfake detection methods have been proposed. Most of them mo del deepfake detection as a vanilla binary classification problem, i.e, first use a backbone network to extract a global feature and then feed it into a binary classifier (real/fake). But since the difference between the real and fake images in this task is often subtle and local, we argue this vanilla solution is not optimal. In this paper, we instead formulate deepfake detection as a fine-grained classification problem and propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps. Moreover, to address the learning difficulty of this network, we further introduce a new regional independence loss and an attention guided data augmentation strategy. Through extensive experiments on different datasets, we demonstrate the superiority of our method over the vanilla binary classifier counterparts, and achieve state-of-the-art performance.
Existing deepfake-detection methods focus on passive detection, i.e., they detect fake face images via exploiting the artifacts produced during deepfake manipulation. A key limitation of passive detection is that it cannot detect fake faces that are generated by new deepfake generation methods. In this work, we propose FaceGuard, a proactive deepfake-detection framework. FaceGuard embeds a watermark into a real face image before it is published on social media. Given a face image that claims to be an individual (e.g., Nicolas Cage), FaceGuard extracts a watermark from it and predicts the face image to be fake if the extracted watermark does not match well with the individuals ground truth one. A key component of FaceGuard is a new deep-learning-based watermarking method, which is 1) robust to normal image post-processing such as JPEG compression, Gaussian blurring, cropping, and resizing, but 2) fragile to deepfake manipulation. Our evaluation on multiple datasets shows that FaceGuard can detect deepfakes accurately and outperforms existing methods.
93 - Yuezun Li , Cong Zhang , Pu Sun 2021
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-sour ce tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
86 - Sohail A. Khan , Hang Dai 2021
Face forgery by deepfake is widely spread over the internet and this raises severe societal concerns. In this paper, we propose a novel video transformer with incremental learning for detecting deepfake videos. To better align the input face images, we use a 3D face reconstruction method to generate UV texture from a single input face image. The aligned face image can also provide pose, eyes blink and mouth movement information that cannot be perceived in the UV texture image, so we use both face images and their UV texture maps to extract the image features. We present an incremental learning strategy to fine-tune the proposed model on a smaller amount of data and achieve better deepfake detection performance. The comprehensive experiments on various public deepfake datasets demonstrate that the proposed video transformer model with incremental learning achieves state-of-the-art performance in the deepfake video detection task with enhanced feature learning from the sequenced data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا