ترغب بنشر مسار تعليمي؟ اضغط هنا

Nondestructive classification of quantum states using an algorithmic quantum computer

326   0   0.0 ( 0 )
 نشر من قبل Walter Pogosov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Methods of processing quantum data become more important as quantum computing devices improve their quality towards fault tolerant universal quantum computers. These methods include discrimination and filtering of quantum states given as an input to the device that may find numerous applications in quantum information technologies. In the present paper, we address a scheme of a classification of input states, which is nondestructive and deterministic for certain inputs, while probabilistic, in general case. This can be achieved by incorporating phase estimation algorithm into the hybrid quantum-classical computation scheme, where quantum block is trained classically. We perform proof-of-principle implementation of this idea using superconducting quantum processor of IBM Quantum Experience. Another aspect we are interested in is a mitigation of errors occurring due to the quantum device imperfections. We apply a series of heuristic tricks at the stage of classical postprocessing in order to improve raw experimental data and to recognize patterns in them. These ideas may find applications in other realization of hybrid quantum-classical computations with noisy quantum machines.



قيم البحث

اقرأ أيضاً

We point out that superconducting quantum computers are prospective for the simulation of the dynamics of spin models far from equilibrium, including nonadiabatic phenomena and quenches. The important advantage of these machines is that they are prog rammable, so that different spin models can be simulated in the same chip, as well as various initial states can be encoded into it in a controllable way. This opens an opportunity to use superconducting quantum computers in studies of fundamental problems of statistical physics such as the absence or presence of thermalization in the free evolution of a closed quantum system depending on the choice of the initial state as well as on the integrability of the model. In the present paper, we performed proof-of-principle digital simulations of two spin models, which are the central spin model and the transverse-field Ising model, using 5- and 16-qubit superconducting quantum computers of the IBM Quantum Experience. We found that these devices are able to reproduce some important consequences of the symmetry of the initial state for the systems subsequent dynamics, such as the excitation blockade. However, lengths of algorithms are currently limited due to quantum gate errors. We also discuss some heuristic methods which can be used to extract valuable information from the imperfect experimental data.
Quantum communication relies on the existence of entanglement between two nodes of a network. Since, entanglement can only be produced using local quantum operations, distribution of parts of this entangled system between different nodes becomes nece ssary. However, due to the extremely fragile nature of entanglement and the presence of losses in the communication channel, the direct distribution of entanglement over large distances is nearly impossible. Quantum repeaters have been proposed to solve this problem. These enable one to establish long-range entanglement by dividing the link into smaller parts, creating entanglement between each part and connecting them up to form the full link. As researchers race to establish entanglement over larger and larger distances, it becomes essential to gauge the performance and robustness of the different protocols that go into designing a quantum repeater, before deploying them in real life. Present day noisy quantum computers are ideal for this task as they can emulate the noisy environment in a quantum communication channel and provide a benchmark for how the protocols will perform on real-life hardware. In this paper, we report the circuit-level implementation of the complete architecture of a Quantum Repeater. All the protocols of the repeater have been bench-marked on IBM Q, the worlds first publicly available cloud quantum computer. The results of our experiment provide a measure for the fidelity of entanglement current repeaters can establish. In addition, the repeater protocol provides a robust benchmark for the current state-of-the-art of quantum computing hardware.
The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searc hing databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 $^{171}$Yb$^{+}$ ions. We demonstrate average single-qubit gate fidelities of 99.5$%$, average two-qubit-gate fidelities of 97.5$%$, and state preparation and measurement errors of 0.7$%$. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani (BV) and Hidden Shift (HS) algorithms into our native gates and execute them on the hardware with average success rates of 78$%$ and 35$%$, respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.
The simulation of strongly correlated many-electron systems is one of the most promising applications for near-term quantum devices. Here we use a class of eigenvalue solvers (presented in Phys. Rev. Lett. 126, 070504 (2021)) in which a contraction o f the Schrodinger equation is solved for the two-electron reduced density matrix (2-RDM) to resolve the energy splittings of ortho-, meta-, and para-isomers of benzyne ${textrm C_6} {textrm H_4}$. In contrast to the traditional variational quantum eigensolver, the contracted quantum eigensolver solves an integration (or contraction) of the many-electron Schrodinger equation onto the two-electron space. The quantum solution of the anti-Hermitian part of the contracted Schrodinger equation (qACSE) provides a scalable approach with variational parameters that has its foundations in 2-RDM theory. Experimentally, a variety of error mitigation strategies enable the calculation, including a linear shift in the 2-RDM targeting the iterative nature of the algorithm as well as a projection of the 2-RDM onto the convex set of approximately $N$-representable 2-RDMs defined by the 2-positive (DQG) $N$-representability conditions. The relative energies exhibit single-digit millihartree errors, capturing a large part of the electron correlation energy, and the computed natural orbital occupations reflect the significant differences in the electron correlation of the isomers.
We propose a protocol for sympathetically cooling neutral atoms without destroying the quantum information stored in their internal states. This is achieved by designing state-insensitive Rydberg interactions between the data-carrying atoms and cold auxiliary atoms. The resulting interactions give rise to an effective phonon coupling, which leads to the transfer of heat from the data atoms to the auxiliary atoms, where the latter can be cooled by conventional methods. This can be used to extend the lifetime of quantum storage based on neutral atoms and can have applications for long quantum computations. The protocol can also be modified to realize state-insensitive interactions between the data and the auxiliary atoms but tunable and non-trivial interactions among the data atoms, allowing one to simultaneously cool and simulate a quantum spin-model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا