ﻻ يوجد ملخص باللغة العربية
The stopping of baryons in heavy ion collisions at beam momenta of $p_{rm lab} = 20-160A$ GeV is lacking a quantitative description within theoretical calculations. Heavy ion reactions at these energies are experimentally explored at the Super Proton Synchrotron (SPS) and the Relativistic Heavy Ion Collider (RHIC) and will be studied at future facilities such as FAIR and NICA. Since the net baryon density is determined by the amount of stopping, this is the pre-requisiste for any investigation of other observables related to structures in the QCD phase diagram such as a first-order phase transition or a critical endpoint. In this work we employ a string model for treating hadron-hadron interactions within a hadronic transport approach (SMASH, Simulating Many Accelerated Strongly-interacting Hadrons). Free parameters of the string excitation and decay are tuned to match experimental measurements in elementary proton-proton collisions, where some mismatch in the $x_F$ distribution of protons is still present. Afterwards, the model is applied to heavy ion collisions, where the experimentally observed change of the shape of the proton rapidity spectrum from a single peak structure to a double peak structure with increasing beam energy is reproduced. Heavy ion collisions provide the opportunity to study the formation process of string fragments in terms of formation times and reduced interaction cross-sections for pre-formed hadrons. A good agreement with the measured rapidity spectra of protons and pions is achieved while insights on the fragmentation process are obtained. In the future, the presented approach can be used to create event-by-event initial conditions for hybrid calculations.
Heavy-ion collisions at low beam energies explore the high density regime of strongly-interacting matter. The dynamical evolution of these collisions can be successfully described by hadronic transport approaches. In March 2019, the HADES collaborati
Microscopic transport approaches are the tool to describe the non-equilibrium evolution in low energy collisions as well as in the late dilute stages of high-energy collisions. Here, a newly developed hadronic transport approach, SMASH (Simulating Ma
The production of antiprotons in proton-nucleus and nucleus-nucleus reactions is calculated within the relativistic BUU approach employing proper selfenergies for the baryons and antiprotons and treating the p-bar annihilation nonperturbatively. The
The stopping behaviour of baryons in massive heavy ion collisions (at SPS, RHIC and LHC) is investigated within different microscopic models. At SPS-energies the predictions range from full stopping to virtually total transparency. Experimental data
Collective flow observables are known to be a sensitive tool to gain insights on the equation of state of nuclear matter from heavy-ion collision observations. Towards more quantitative constraints one has to carefully assess other influences on the