ﻻ يوجد ملخص باللغة العربية
This paper investigates the problem of detection and classification of unmanned aerial vehicles (UAVs) in the presence of wireless interference signals using a passive radio frequency (RF) surveillance system. The system uses a multistage detector to distinguish signals transmitted by a UAV controller from the background noise and interference signals. First, RF signals from any source are detected using a Markov models-based naive Bayes decision mechanism. When the receiver operates at a signal-to-noise ratio (SNR) of 10 dB, and the threshold, which defines the states of the models, is set at a level 3.5 times the standard deviation of the preprocessed noise data, a detection accuracy of 99.8% with a false alarm rate of 2.8% is achieved. Second, signals from Wi-Fi and Bluetooth emitters, if present, are detected based on the bandwidth and modulation features of the detected RF signal. Once the input signal is identified as a UAV controller signal, it is classified using machine learning (ML) techniques. Fifteen statistical features extracted from the energy transients of the UAV controller signals are fed to neighborhood component analysis (NCA), and the three most significant features are selected. The performance of the NCA and five different ML classifiers are studied for 15 different types of UAV controllers. A classification accuracy of 98.13% is achieved by k-nearest neighbor classifier at 25 dB SNR. Classification performance is also investigated at different SNR levels and for a set of 17 UAV controllers which includes two pairs from the same UAV controller models.
This paper investigates the problem of classification of unmanned aerial vehicles (UAVs) from radio frequency (RF) fingerprints at the low signal-to-noise ratio (SNR) regime. We use convolutional neural networks (CNNs) trained with both RF time-serie
Detecting UAVs is becoming more crucial for various industries such as airports and nuclear power plants for improving surveillance and security measures. Exploiting radio frequency (RF) based drone control and communication enables a passive way of
This paper presents a sparse denoising autoencoder (SDAE)-based deep neural network (DNN) for the direction finding (DF) of small unmanned aerial vehicles (UAVs). It is motivated by the practical challenges associated with classical DF algorithms suc
This paper discusses the problem of securing the transmissions of multiple ground users against eavesdropping attacks. We propose and optimize the deployment of a single unmanned aerial vehicle (UAV), which serves as an aerial relay between the user
Bluetooth Low Energy (BLE) is a short-range data transmission technology that is used for multimedia file sharing, home automation, and internet-of-things application. In this work, we perform packet error rate (PER) measurement and RF testing of BLE