ﻻ يوجد ملخص باللغة العربية
We study the optimization problem of selecting numerical quantities to clean in order to fact-check claims based on such data. Oftentimes, such claims are technically correct, but they can still mislead for two reasons. First, data may contain uncertainty and errors. Second, data can be fished to advance particular positions. In practice, fact-checkers cannot afford to clean all data and must choose to clean what matters the most to checking a claim. We explore alternative definitions of what matters the most: one is to ascertain claim qualities (by minimizing uncertainty in these measures), while an alternative is just to counter the claim (by maximizing the probability of finding a counterargument). We show whether the two objectives align with each other, with important implications on when fact-checkers should exercise care in selective data cleaning, to avoid potential bias introduced by their desire to counter claims. We develop efficient algorithms for solving the various variants of the optimization problem, showing significant improvements over naive solutions. The problem is particularly challenging because the objectives in the fact-checking context are complex, non-linear functions over data. We obtain results that generalize to a large class of functions, with potential applications beyond fact-checking.
Multi-round competitions often double or triple the points awarded in the final round, calling it a bonus, to maximize spectators excitement. In a two-player competition with $n$ rounds, we aim to derive the optimal bonus size to maximize the audienc
We present SUMO, a neural attention-based approach that learns to establish the correctness of textual claims based on evidence in the form of text documents (e.g., news articles or Web documents). SUMO further generates an extractive summary by pres
Manual fact-checking does not scale well to serve the needs of the internet. This issue is further compounded in non-English contexts. In this paper, we discuss claim matching as a possible solution to scale fact-checking. We define claim matching as
Traditional fact checking by expert journalists cannot keep up with the enormous volume of information that is now generated online. Computational fact checking may significantly enhance our ability to evaluate the veracity of dubious information. He
The rise of Internet has made it a major source of information. Unfortunately, not all information online is true, and thus a number of fact-checking initiatives have been launched, both manual and automatic. Here, we present our contribution in this