ترغب بنشر مسار تعليمي؟ اضغط هنا

Astrophysical Tau Neutrino Identification with IceCube Waveforms

111   0   0.0 ( 0 )
 نشر من قبل Donglian Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard neutrino oscillation paradigm predicts almost equal fractions of astrophysical neutrino flavors at Earth regardless of their production ratio at the sources. Therefore, identification of astrophysical tau neutrinos could not only reconfirm the astrophysical neutrino flux measured by IceCube, but also is essential in precisely determining the astrophysical neutrino flavor ratio at Earth, which is an important probe for physics beyond the Standard Model over astronomical baselines. A tau neutrino undergoing a charged current (CC) interaction in IceCube could produce a double deposition of energy, with the first one from the CC hadronic shower and the second from the subsequent tau lepton decay shower. Above an energy of ~100 TeV, such consecutive energy depositions might be resolvable in the sensor waveforms and hence can be a signature of an individual tau neutrino interaction in IceCube. We will present the results of a search for astrophysical tau neutrinos in IceCube waveforms with improved double pulse waveform identification techniques and using 8 years of data.

قيم البحث

اقرأ أيضاً

120 - Donglian Xu 2017
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino flux. While the flux is consistent with all flavors of neutrinos being present, identification of tau neutrinos within the flux is yet to occur. Although tau neutrino production is thought to be low at the source, an equal fraction of neutrinos are expected at Earth due to averaged neutrino oscillations over astronomical distances. Above a few hundred TeV, tau neutrinos become resolvable in IceCube with negligible background from cosmic-ray induced atmospheric neutrinos. Identification of tau neutrinos within the observed flux is crucial to precise measurement of its flavor content, which could serve to test fundamental neutrino properties over extremely long baselines, and possibly shed light on new physics beyond the Standard Model. We present the analysis method and results from a recent search for astrophysical tau neutrinos in three years of IceCube data.
DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus on triggered time-dependent analyses, we aim to utilize a newly developed event selection and dataset for an untriggered all-sky time-dependent search for transients. In this work, all-flavor neutrinos are used, where neutrino types are determined based on the topology of the events. We extend the previous DeepCore transient half-sky search to an all-sky search and focus only on short timescale sources (with a duration of $10^2 sim 10^5$ seconds). All-sky sensitivities to transients in an energy range from 10 GeV to 300 GeV will be presented in this poster. We show that DeepCore can be reliably used for all-sky searches for short-lived astrophysical sources.
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to th ose used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon neu- trinos from the Northern Sky (-5$^{circ}$ < {delta} < 90$^{circ}$ ) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events is used to search for any significant self-correlation in the dataset. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1$,$s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae.
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated ($si m 90 %$) by electron and tau flavors. The flux, observed in the sensitive energy range from $16,mathrm{TeV}$ to $2.6,mathrm{PeV}$, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be $gamma=2.53pm0.07$ and a flux normalization for each neutrino flavor of $phi_{astro} = 1.66^{+0.25}_{-0.27}$ at $E_{0} = 100, mathrm{TeV}$, in agreement with IceCubes complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices $gammaleq2.28$ at $ge3sigma$ significance level. Due to high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below $sim100,{rm{TeV}}$ compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value $ge 0.06$). The sizable and smooth flux measured below $sim 100,{rm{TeV}}$ remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi-LAT, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma-rays.
Multi-messenger astrophysics will enable the discovery of new astrophysical neutrino sources and provide information about the mechanisms that drive these objects. We present a curated online catalog of astrophysical neutrino candidates. Whenever sin gle high energy neutrino events, that are publicly available, get published multiple times from various analyses, the catalog records all these changes and highlights the best information. All studies by IceCube that produce astrophysical candidates will be included in our catalog. All information produced by these searches such as time, type, direction, neutrino energy and signalness will be contained in the catalog. The multi-messenger astrophysical community will be able to select neutrinos with certain characteristics, e.g. within a declination range, visualize data for the selected neutrinos, and finally download data in their preferred form to conduct further studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا