ﻻ يوجد ملخص باللغة العربية
We perform a systematic study of Gamow-Teller (GT) transitions in the 2p1f shell, using the nuclear shell model with two schematic Hamiltonians. The use of the shell model provides flexibility to analyze the role of different proton-neutron pairing modes in the presence of nuclear deformation. The schematic Hamiltonians that are used contain a quadrupole-quadrupole interaction as well as isoscalar (T=0) and isovector (T=1) pairing interactions, but differ in the single particle energies. The objective of the work is to observe the behavior of GT transitions in different isoscalar and isovector pairing scenarios, together with the corresponding energy spectra and rotational properties of the parent and daughter nuclei (42Ca -> 42Sc, 44Ca -> 44Sc, 46Ti -> 46V, 48Ti -> 48V). We also treat the rotational properties of 44Ti and 48Cr. All results are compared with experimental data. The results obtained from our models depend on the different scenarios that arise, whether for N = Z or N neq Z nuclei. In the latter case, the presence of an attractive isoscalar pairing interaction imposes a 1+ ground state in odd-odd nuclei, contrary to observations for some of the nuclei considered, and it is necessary to suppress that pairing mode when considering such nuclei. The effect of varying the strength parameters for the two pairing modes is found to exhibit different but systematic effects on energy spectra and on GT transition properties.
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nu
The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interactions approach formu
We propose a particle number conserving formalism for the treatment of isovector-isoscalar pairing in nuclei with $N>Z$. The ground state of the pairing Hamiltonian is described by a quartet condensate to which is appended a pair condensate formed by
Neutron-proton (np-) pairing is expected to play an important role in the N Z nuclei. In general, it can have isovector and isoscalar character. The existence of isovector np-pairing is well established. On the contrary, it is still debated whether t
Gamow-Teller (GT) strength distributions of Mg isotopes are investigated within a framework of the deformed quasi-particle random phase approximation(DQRPA). We found that the N=20 shell closure in $^{28 sim 34}$Mg was broken by the prolate shape def