ترغب بنشر مسار تعليمي؟ اضغط هنا

A momentum conserving accretion disk wind in the narrow line Seyfert 1, I Zwicky 1

104   0   0.0 ( 0 )
 نشر من قبل James Reeves
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

I Zwicky 1 is the prototype optical narrow line Seyfert 1 galaxy. It is also a nearby ($z=0.0611$), luminous QSO, accreting close to the Eddington limit. XMM-Newton observations of I Zw 1 in 2015 reveal the presence of a broad and blueshifted P-Cygni iron K profile, as observed through a blue-shifted absorption trough at 9 keV and a broad excess of emission at 7 keV in the X-ray spectra. The profile can be well fitted with a wide angle accretion disk wind, with an outflow velocity of at least $-0.25c$. In this respect, I Zw 1 may be an analogous to the prototype fast wind detected in the QSO, PDS 456, while its overall mass outflow rate is scaled down by a factor $times50$ due to its lower black hole mass. The mechanical power of the fast wind in I Zw 1 is constrained to within $5-15$% of Eddington, while its momentum rate is of the order unity. Upper-limits placed on the energetics of any molecular outflow, from its CO profile measured by IRAM, appear to rule out the presence of a powerful, large scale, energy conserving wind in this AGN. We consider whether I Zw 1 may be similar to a number of other AGN, such as PDS 456, where the large scale galactic outflow is much weaker than what is anticipated from models of energy conserving feedback.



قيم البحث

اقرأ أيضاً

We report results of the first reverberation mapping campaign of I Zwicky 1 during $2014$-$2016$, which showed unambiguous reverberations of the broad H$beta$ line emission to the varying optical continuum. From analysis using several methods, we obt ain a reverberation lag of $tau_{rm Hbeta}=37.2^{+4.5}_{-4.9},$ days. Taking a virial factor of $f_{_{rm BLR}}=1$, we find a black hole mass of $M_{bullet}=9.30_{-1.38}^{+1.26}times 10^6 M_{odot}$ from the mean spectra. The accretion rate is estimated to be $203.9_{-65.8}^{+61.0},L_{rm Edd}c^{-2}$, suggesting a super-Eddington accretor, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is the speed of light. By decomposing {it Hubble Space Telescope} images, we find that the stellar mass of the bulge of its host galaxy is $log (M_{rm bulge}/M_{odot}) = rm 10.92pm 0.07$. This leads to a black hole to bulge mass ratio of $sim 10^{-4}$, which is significantly smaller than that of classical bulges and elliptical galaxies. After subtracting the host contamination from the observed luminosity, we find that I Zw 1 follows the empirical $R_{rm BLR}propto L_{5100}^{1/2}$ relation.
Approximately 10-20% of Active Galactic Nuclei are known to eject powerful jets from the innermost regions. There is very little observational evidence if the jets are powered by spinning black holes and if the accretion disks extend to the innermost regions in radio-loud AGN. Here we study the soft X-ray excess, the hard X-ray spectrum and the optical/UV emission from the radio-loud narrow-line Seyfert 1 galaxy PKS 0558-504 using Suzaku and Swift observations. The broadband X-ray continuum of PKS 0558- 504 consists of a soft X-ray excess emission below 2 keV that is well described by a blackbody (kTe ~ 0.13 keV) and high energy emission that is well described by a thermal Comptonisation (compps) model with kTe ~ 250 keV, optical depth {tau} ~ 0.05 (spherical corona) or kTe ~ 90 keV, {tau} ~ 0.5 (slab corona). The Comptonising corona in PKS 0558-504 is likely hotter than in radio-quiet Seyferts such as IC 4329A and Swift J2127.4+5654. The observed soft X-ray excess can be modelled as blurred reflection from an ionised accretion disk or optically thick thermal Comptonisation in a low temperature plasma. Both the soft X-ray excess emission when interpreted as the blurred reflection and the optical/UV to soft X-ray emission interpreted as intrinsic disk Comptonised emission implies spinning (a > 0.6) black hole. These results suggest that disk truncation at large radii and retrograde black hole spin both are unlikely to be the necessary conditions for launching the jets.
Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the H$beta$ broad emission line < 2000 km/s and the flux ratio of [O III] to H$beta$ < 3. Their properties a re not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z $le$ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 per pixel. Strong correlations between the H$beta$ and H$alpha$ emission lines are found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of H$beta$, H$alpha$ and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the $R_{4570}$ - $xi_{Edd}$ diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R > 10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 $pm$ 0.9) than BLSy1 galaxies (2.4 $pm$ 0.8). It is anti-correlated with the H$beta$ width but correlated with the Fe II strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.
We report finding kiloparsec-scale radio emissions aligned with parsec-scale jet structures in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 1239 using the Very Large Array and the Very Long Baseline Array. Thus, this radio-quiet NLS1 has a jet-produci ng central engine driven by essentially the same mechanism as that of other radio-loud active galactic nuclei (AGNs). Most of the radio luminosity is concentrated within 100 parsecs and overall radio morphology looks edge-darkened; the estimated jet kinetic power is comparable to Fanaroff--Riley Type I radio galaxies. The conversion from accretion to jet power appears to be highly inefficient in this highly accreting low-mass black hole system compared with that in a low-luminosity AGN with similar radio power driven by a sub-Eddington, high-mass black hole. Thus, Mrk 1239 is a crucial probe to the unexplored parameter spaces of central engines for a jet formation.
We present a detailed analysis of XMM-Newton X-ray spectra of the Narrow-Line Seyfert 1 galaxy Mrk 1044. We find robust evidence for a multi-phase, ultra-fast outflow, traced by four separate components in the grating spectrum. One component has high column density and ionization state, and is outflowing at 0.15c. The other three wind components have lower temperature, lower column density, and have outflow velocities 0.08c. This wind structure is strikingly similar to that found in IRAS 17020+4544, suggesting that stratified winds may be a common feature of ultra-fast outflows. Such structure is likely produced by fluid instabilities that form when the nuclear wind shocks the ambient medium. We show that in an energy-driven wind scenario, the wind in Mrk 1044 might carry enough energy to produce significant feedback on its host galaxy. We further discuss the implications of the presence of a fast wind in yet another NLS1 galaxy with high Eddington ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا