ﻻ يوجد ملخص باللغة العربية
Many problems in robotics involve multiple decision making agents. To operate efficiently in such settings, a robot must reason about the impact of its decisions on the behavior of other agents. Differential games offer an expressive theoretical framework for formulating these types of multi-agent problems. Unfortunately, most numerical solution techniques scale poorly with state dimension and are rarely used in real-time applications. For this reason, it is common to predict the future decisions of other agents and solve the resulting decoupled, i.e., single-agent, optimal control problem. This decoupling neglects the underlying interactive nature of the problem; however, efficient solution techniques do exist for broad classes of optimal control problems. We take inspiration from one such technique, the iterative linear-quadratic regulator (ILQR), which solves repeated approximations with linear dynamics and quadratic costs. Similarly, our proposed algorithm solves repeated linear-quadratic games. We experimentally benchmark our algorithm in several examples with a variety of initial conditions and show that the resulting strategies exhibit complex interactive behavior. Our results indicate that our algorithm converges reliably and runs in real-time. In a three-player, 14-state simulated intersection problem, our algorithm initially converges in < 0.25s. Receding horizon invocations converge in < 50 ms in a hardware collision-avoidance test.
Iterative linear-quadratic (ILQ) methods are widely used in the nonlinear optimal control community. Recent work has applied similar methodology in the setting of multiplayer general-sum differential games. Here, ILQ methods are capable of finding lo
We consider a general-sum N-player linear-quadratic game with stochastic dynamics over a finite horizon and prove the global convergence of the natural policy gradient method to the Nash equilibrium. In order to prove the convergence of the method, w
We present a numerical approach to finding optimal trajectories for players in a multi-body, asset-guarding game with nonlinear dynamics and non-convex constraints. Using the Iterative Best Response (IBR) scheme, we solve for each players optimal str
The paper studies the open-loop saddle point and the open-loop lower and upper values, as well as their relationship for two-person zero-sum stochastic linear-quadratic (LQ, for short) differential games with deterministic coefficients. It derives a
While the topic of mean-field games (MFGs) has a relatively long history, heretofore there has been limited work concerning algorithms for the computation of equilibrium control policies. In this paper, we develop a computable policy iteration algori