ﻻ يوجد ملخص باللغة العربية
Heterogeneous 3D System-on-Chips (3D SoCs) are the most promising design paradigm to combine sensing and computing within a single chip. A special characteristic of communication networks in heterogeneous 3D SoCs is the varying latency and throughput in each layer. As shown in this work, this variance drastically degrades the network performance. We contribute a co-design of routing algorithms and router microarchitecture that allows to overcome these performance limitations. We analyze the challenges of heterogeneity: Technology-aware models are proposed for communication and thereby identify layers in which packets are transmitted slower. The communication models are precise for latency and throughput under zero load. The technology model has an area error and a timing error of less than 7.4% for various commercial technologies from 90 to 28nm. Second, we demonstrate how to overcome limitations of heterogeneity by proposing two novel routing algorithms called Z+(XY)Z- and ZXYZ that enhance latency by up to 6.5x compared to conventional dimension order routing. Furthermore, we propose a high vertical-throughput router microarchitecture that is adjusted to the routing algorithms and that fully overcomes the limitations of slower layers. We achieve an increased throughput of 2 to 4x compared to a conventional router. Thereby, the dynamic power of routers is reduced by up to 41.1% and we achieve improved flit latency of up to 2.26x at small total router area costs between 2.1% and 10.4% for realistic technologies and application scenarios.
One of the most critical aspects of integrating loosely-coupled accelerators in heterogeneous SoC architectures is orchestrating their interactions with the memory hierarchy, especially in terms of navigating the various cache-coherence options: from
Mobile system-on-chips (SoCs) are growing in their complexity and heterogeneity (e.g., Arms Big-Little architecture) to meet the needs of emerging applications, including games and artificial intelligence. This makes it very challenging to optimally
We introduce ratatoskr, an open-source framework for in-depth power, performance and area (PPA) analysis in NoCs for 3D-integrated and heterogeneous System-on-Chips (SoCs). It covers all layers of abstraction by providing a NoC hardware implementatio
Memories that exploit three-dimensional (3D)-stacking technology, which integrate memory and logic dies in a single stack, are becoming popular. These memories, such as Hybrid Memory Cube (HMC), utilize a network-on-chip (NoC) design for connecting t
Artificial intelligence (AI) technologies have dramatically advanced in recent years, resulting in revolutionary changes in peoples lives. Empowered by edge computing, AI workloads are migrating from centralized cloud architectures to distributed edg