ترغب بنشر مسار تعليمي؟ اضغط هنا

What do Deep Networks Like to Read?

237   0   0.0 ( 0 )
 نشر من قبل Jonas Pfeiffer
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent research towards understanding neural networks probes models in a top-down manner, but is only able to identify model tendencies that are known a priori. We propose Susceptibility Identification through Fine-Tuning (SIFT), a novel abstractive method that uncovers a models preferences without imposing any prior. By fine-tuning an autoencoder with the gradients from a fixed classifier, we are able to extract propensities that characterize different kinds of classifiers in a bottom-up manner. We further leverage the SIFT architecture to rephrase sentences in order to predict the opposing class of the ground truth label, uncovering potential artifacts encoded in the fixed classification model. We evaluate our method on three diverse tasks with four different models. We contrast the propensities of the models as well as reproduce artifacts reported in the literature.

قيم البحث

اقرأ أيضاً

Natural Language Processing (NLP) models propagate social biases about protected attributes such as gender, race, and nationality. To create interventions and mitigate these biases and associated harms, it is vital to be able to detect and measure su ch biases. While many existing works propose bias evaluation methodologies for different tasks, there remains a need to cohesively understand what biases and normative harms each of these measures captures and how different measures compare. To address this gap, this work presents a comprehensive survey of existing bias measures in NLP as a function of the associated NLP tasks, metrics, datasets, and social biases and corresponding harms. This survey also organizes metrics into different categories to present advantages and disadvantages. Finally, we propose a documentation standard for bias measures to aid their development, categorization, and appropriate usage.
With growing access to versatile robotics, it is beneficial for end users to be able to teach robots tasks without needing to code a control policy. One possibility is to teach the robot through successful task executions. However, near-optimal demon strations of a task can be difficult to provide and even successful demonstrations can fail to capture task aspects key to robust skill replication. Here, we propose a learning from demonstration (LfD) approach that enables learning of robust task definitions without the need for near-optimal demonstrations. We present a novel algorithmic framework for learning tasks based on the ergodic metric -- a measure of information content in motion. Moreover, we make use of negative demonstrations -- demonstrations of what not to do -- and show that they can help compensate for imperfect demonstrations, reduce the number of demonstrations needed, and highlight crucial task elements improving robot performance. In a proof-of-concept example of cart-pole inversion, we show that negative demonstrations alone can be sufficient to successfully learn and recreate a skill. Through a human subject study with 24 participants, we show that consistently more information about a task can be captured from combined positive and negative (posneg) demonstrations than from the same amount of just positive demonstrations. Finally, we demonstrate our learning approach on simulated tasks of target reaching and table cleaning with a 7-DoF Franka arm. Our results point towards a future with robust, data-efficient LfD for novice users.
Deep convolutional neural networks learn extremely powerful image representations, yet most of that power is hidden in the millions of deep-layer parameters. What exactly do these parameters represent? Recent work has started to analyse CNN represent ations, finding that, e.g., they are invariant to some 2D transformations Fischer et al. (2014), but are confused by particular types of image noise Nguyen et al. (2014). In this work, we delve deeper and ask: how invariant are CNNs to object-class variations caused by 3D shape, pose, and photorealism?
This document will review the most prominent proposals using multilayer convolutional architectures. Importantly, the various components of a typical convolutional network will be discussed through a review of different approaches that base their des ign decisions on biological findings and/or sound theoretical bases. In addition, the different attempts at understanding ConvNets via visualizations and empirical studies will be reviewed. The ultimate goal is to shed light on the role of each layer of processing involved in a ConvNet architecture, distill what we currently understand about ConvNets and highlight critical open problems.
118 - Zining Zhu , Bai Li , Yang Xu 2021
As the numbers of submissions to conferences grow quickly, the task of assessing the quality of academic papers automatically, convincingly, and with high accuracy attracts increasing attention. We argue that studying interpretable dimensions of thes e submissions could lead to scalable solutions. We extract a collection of writing features, and construct a suite of prediction tasks to assess the usefulness of these features in predicting citation counts and the publication of AI-related papers. Depending on the venues, the writing features can predict the conference vs. workshop appearance with F1 scores up to 60-90, sometimes even outperforming the content-based tf-idf features and RoBERTa. We show that the features describe writing style more than content. To further understand the results, we estimate the causal impact of the most indicative features. Our analysis on writing features provides a perspective to assessing and refining the writing of academic articles at scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا