ﻻ يوجد ملخص باللغة العربية
An $r$-dynamic $k$-coloring of a graph $G$ is a proper $k$-coloring such that for any vertex $v$, there are at least $min{r, deg_G(v) }$ distinct colors in $N_G(v)$. The $r$-dynamic chromatic number $chi_r^d(G)$ of a graph $G$ is the least $k$ such that there exists an $r$-dynamic $k$-coloring of $G$. The list $r$-dynamic chromatic number of a graph $G$ is denoted by $ch_r^d(G)$. Loeb et al. $[11]$ showed that $ch_3^d(G)leq 10$ for every planar graph $G$, and there is a planar graph $G$ with $chi_3^d(G)= 7$. In this paper, we study a special class of planar graphs which have better upper bounds of $ch_3^d(G)$. We prove that $ch_3^d(G) leq 6$ if $G$ is a planar graph which is near-triangulation, where a near-triangulation is a planar graph whose bounded faces are all 3-cycles.
Motivated by the ErdH{o}s-Faber-Lovasz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We discuss several conjectures for list edge coloring linear hypergraphs that generalize both EFL and Vizings theorem f
A strong edge-coloring of a graph $G$ is an edge-coloring such that any two edges on a path of length three receive distinct colors. We denote the strong chromatic index by $chi_{s}(G)$ which is the minimum number of colors that allow a strong edge-c
The textit{$k$-weak-dynamic number} of a graph $G$ is the smallest number of colors we need to color the vertices of $G$ in such a way that each vertex $v$ of degree $d(v)$ sees at least $rm{min}{k,d(v)}$ colors on its neighborhood. We use reducible
Golovach, Paulusma and Song (Inf. Comput. 2014) asked to determine the parameterized complexity of the following problems parameterized by $k$: (1) Given a graph $G$, a clique modulator $D$ (a clique modulator is a set of vertices, whose removal resu
A graph $G$ is called $3$-choice critical if $G$ is not $2$-choosable but any proper subgraph is $2$-choosable. A characterization of $3$-choice critical graphs was given by Voigt in [On list Colourings and Choosability of Graphs, Habilitationsschrif