ﻻ يوجد ملخص باللغة العربية
In wireless industrial networks, the information of time-sensitive control systems needs to be transmitted in an ultra-reliable and low-latency manner. This letter studies the resource allocation problem in finite blocklength transmission, in which the information freshness is measured as the age of information (AoI) whose maximal AoI is characterized using extreme value theory (EVT). The considered system design is to minimize the sensors transmit power and transmission blocklength subject to constraints on the maximal AoIs tail behavior. The studied problem is solved using Lyapunov stochastic optimization, and a dynamic reliability and age-aware policy for resource allocation and status updates is proposed. Simulation results validate the effectiveness of using EVT to characterize the maximal AoI. It is shown that sensors need to send larger-size data with longer transmission blocklength at lower transmit power. Moreover, the maximal AoIs tail decays faster at the expense of higher average information age.
While information delivery in industrial Internet of things demands reliability and latency guarantees, the freshness of the controllers available information, measured by the age of information (AoI), is paramount for high-performing industrial auto
We consider the problem of minimizing age in a multihop wireless network. There are multiple source-destination pairs, transmitting data through multiple wireless channels, over multiple hops. We propose a network control policy which consists of a d
This paper studies an unmanned aerial vehicle (UAV)-assisted wireless network, where a UAV is dispatched to gather information from ground sensor nodes (SN) and transfer the collected data to the depot. The information freshness is captured by the ag
The notion of age-of-information (AoI) is investigated in the context of large-scale wireless networks, in which transmitters need to send a sequence of information packets, which are generated as independent Bernoulli processes, to their intended re
Age of Information is a new metric used in real-time status update tracking applications. It measures at the destination the time elapsed since the generation of the last received packet. In this paper, we consider the co-existence of critical and no