ترغب بنشر مسار تعليمي؟ اضغط هنا

The highest-speed local dark matter particles come from the Large Magellanic Cloud

62   0   0.0 ( 0 )
 نشر من قبل Gurtina Besla
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Gurtina Besla -




اسأل ChatGPT حول البحث

Using N-body simulations of the Large Magellanic Cloud (LMCs) passage through the Milky Way (MW), tailored to reproduce observed kinematic properties of both galaxies, we show that the high-speed tail of the Solar Neighborhood dark matter distribution is overwhelmingly of LMC origin. Two populations contribute at high speeds: 1) Particles that were once bound to the LMC, and 2) MW halo particles that have been accelerated owing to the response of the halo to the recent passage of the LMC. These particles reach speeds of 700-900 km/s with respect to the Earth, above the local escape speed of the MW. The high-speed particles follow trajectories similar to the Solar reflex motion, with peak velocities reached in June. For low-mass dark matter, these high-speed particles can dominate the signal in direct-detection experiments, extending the reach of the experiments to lower mass and elastic scattering cross sections even with existing data sets. Our study shows that even non-disrupted MW satellite galaxies can leave a significant dark-matter footprint in the Solar Neighborhood.

قيم البحث

اقرأ أيضاً

At a distance of 50 kpc and with a dark matter mass of $sim10^{10}$ M$_{odot}$, the Large Magellanic Cloud (LMC) is a natural target for indirect dark matter searches. We use five years of data from the Fermi Large Area Telescope (LAT) and updated mo dels of the gamma-ray emission from standard astrophysical components to search for a dark matter annihilation signal from the LMC. We perform a rotation curve analysis to determine the dark matter distribution, setting a robust minimum on the amount of dark matter in the LMC, which we use to set conservative bounds on the annihilation cross section. The LMC emission is generally very well described by the standard astrophysical sources, with at most a $1-2sigma$ excess identified near the kinematic center of the LMC once systematic uncertainties are taken into account. We place competitive bounds on the dark matter annihilation cross section as a function of dark matter particle mass and annihilation channel.
We present a comprehensive multi-frequency catalogue of radio sources behind the Large Magellanic Cloud between 0.2 and 20 GHz, gathered from a combination of new and legacy radio continuum surveys. This catalogue covers an area of $sim$144~deg$^2$ a t angular resolutions from 45 arcsec to $sim$3 arcmin. We find 6434 discrete radio sources in total, of which 3789 are detected at two or more radio frequencies. We estimate the median spectral index ($alpha$; where $S_{v}sim u^alpha$) of $alpha = -0.89 $ and mean of $-0.88 pm 0.48$ for 3636 sources detected exclusively at two frequencies (0.843 and 1.384 GHz) with similar resolution (FWHM $sim$40-45 arcsec). The large frequency range of the surveys makes it an effective tool to investigate Gigahertz Peak Spectrum (GPS), Compact Steep Spectrum (CSS) and Infrared Faint Radio sources populations within our sample. We find 10 GPS candidates with peak frequencies near 5 GHz, from which we estimate their linear size. 1866 sources from our catalogue are (CSS) candidates with $alpha <-0.8$. We found six candidates for High Frequency Peaker (HFP) sources, whose radio fluxes peak above 5 GHz and no sources with unconstrained peaks and $alpha~>0.5$. We found optical counterparts for 343 of the radio continuum sources, of which 128have a redshift measurement. Finally, we investigate the population of 123 Infrared Faint Radio Sources (IFRSs) found in this study.
289 - Richard de Grijs 2014
The distance to the Large Magellanic Cloud (LMC) represents a key local rung of the extragalactic distance ladder. Yet, the galaxys distance modulus has long been an issue of contention, in particular in view of claims that most newly determined dist ance moduli cluster tightly - and with a small spread - around the canonical distance modulus, (m-M)_0 = 18.50 mag. We compiled 233 separate LMC distance determinations published between 1990 and 2013. Our analysis of the individual distance moduli, as well as of their two-year means and standard deviations resulting from this largest data set of LMC distance moduli available to date, focuses specifically on Cepheid and RR Lyrae variable-star tracer populations, as well as on distance estimates based on features in the observational Hertzsprung-Russell diagram. We conclude that strong publication bias is unlikely to have been the main driver of the majority of published LMC distance moduli. However, for a given distance tracer, the body of publications leading to the tightly clustered distances is based on highly non-independent tracer samples and analysis methods, hence leading to significant correlations among the LMC distances reported in subsequent articles. Based on a careful, weighted combination, in a statistical sense, of the main stellar population tracers, we recommend that a slightly adjusted canonical distance modulus of (m-M)_0 = 18.49 +- 0.09 mag be used for all practical purposes that require a general distance scale without the need for accuracies of better than a few percent.
The structural parameters, like the inclination, i and the position angle of the line of nodes (PA_lon) of the disk of the Large Magellanic Cloud (LMC) are estimated using the JH photometric data of red clump stars from the Infrared Survey Facility - Magellanic Cloud Point Source Catalog (IRSF-MCPSC). The observed LMC region is divided into several sub-regions and stars in each region are cross identified with the optically identified red clump stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J-H) colour of the observed red clump distribution are obtained by fitting a profile to the distributions and also by taking the average value of magnitude and colour of the red clump stars in the bin with largest number. Then the dereddened peak H0 magnitude of the red clump stars in each sub-region is obtained. The RA, Dec and relative distance from the center of each sub-region are converted into x, y & z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. A reddening map based on (J-H) colour of the RC stars is presented. When the peaks of the red clump distribution were identified by averaging, an inclination of 25.7 +/- 1.6 and PA_lon = 141.5 +/- 4.5 were obtained. We estimate a distance modulus of 18.47 +/- 0.1 mag to the LMC. Extra-planar features which are in front as well as behind the fitted plane are identified which match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500 pc. The estimates of the structural parameters are found to be independent of the photometric bands used for the analysis. We find that the inner disk, within 3.0, is less inclined and has larger value of PA_lon when compared to the outer disk.
The dark matter velocity distribution in the Solar neighbourhood is an important astrophysical input which enters in the predicted event rate of dark matter direct detection experiments. It has been recently suggested that the local dark matter veloc ity distribution can be inferred from that of old or metal-poor stars in the Milky Way. We investigate this potential relation using six high resolution magneto-hydrodynamical simulations of Milky Way-like galaxies of the Auriga project. We do not find any correlation between the velocity distributions of dark matter and old stars in the Solar neighbourhood. Likewise, there are no strong correlations between the local velocity distributions of dark matter and metal-poor stars selected by applying reasonable cuts on metallicity. In some simulated galaxies, extremely metal-poor stars have a velocity distribution that is statistically consistent with that of the dark matter, but the sample of such stars is so small that we cannot draw any strong conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا