ﻻ يوجد ملخص باللغة العربية
Recently, a family of models that couple multifluid systems to the full Maxwell equations draw a lot of attention in laboratory, space, and astrophysical plasma modeling. These models are more complete descriptions of the plasma than reduced models like magnetohydrodynamic (MHD) since they naturally retain non-ideal effects like electron inertia, Hall term, pressure anisotropy/nongyrotropy, etc. One obstacle to broader application of these model is that an explicit treatment of their source terms leads to the need to resolve rapid kinetic processes like plasma oscillation and electron cyclotron motion, even when they are not important. In this paper, we suggest two ways to address this issue. First, we derive the analytic forms solutions to the source update equations, which can be implemented as a practical, but less generic solver. We then develop a time-centered, locally implicit algorithm to update the source terms, allowing stepping over the fast kinetic time-scales. For a plasma with $S$ species, the locally implict algorithm involves inverting a local $3S+3$ matrix only, thus is very efficient. The performance can be further elevated by using the direct update formulas to skip null calculations. Benchmarks illustrated the exact energy-conservation of the locally implicit solver, as well as its efficiency and robustness for both small-scale, idealized problems and large-scale, complex systems. The locally implicit algorithm can be also easily extended to include other local sources, like collisions and ionization, which are difficult to solve analytically.
Wereportonanewmultiscalemethodapproachforthestudyofsystemswith wide separation of short-range forces acting on short time scales and long-range forces acting on much slower scales. We consider the case of the Poisson-Boltzmann equation that describes
We explore the use of field solvers as approximations of classical Vlasov-Poisson systems. This correspondence is investigated in both electrostatic and gravitational contexts. We demonstrate the ability of field solvers to be excellent approximation
Based on the previously developed Energy Conserving Semi Implicit Method (ECsim) code, we present its cylindrical implementation, called ECsim-CYL, to be used for axially symmetric problems. The main motivation for the development of the cylindrical
In this work, we use the finite differences in time domain (FDTD) numerical method to compute and assess the validity of Hopf solutions, or hopfions, for the electromagnetic field equations. In these solutions, field lines form closed loops character
We consider linear stability of steady states of 1(1/2) and 3D Vlasov-Maxwell systems for collisionless plasmas. The linearized systems can be written as separable Hamiltonian systems with constraints. By using a general theory for separable Hamilton