ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for exotic cores with binary neutron star inspirals

129   0   0.0 ( 0 )
 نشر من قبل Hsin-Yu Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the feasibility of detecting exotic cores in merging neutron stars with ground-based gravitational-wave detectors. We focus on models with a sharp nuclear/exotic matter interface, and assume a uniform distribution of neutron stars in the mass range $[1,2] M_odot$. We find that the existence of exotic cores can be confirmed at the 70% confidence level with as few as several tens of detections. Likewise, with such a sample, we find that some models of exotic cores can be excluded {with high confidence}.

قيم البحث

اقرأ أيضاً

We study whether binary black hole template banks can be used to search for the gravitational waves emitted by general binary coalescences. To recover binary signals from noisy data, matched-filtering techniques are typically required. This is especi ally true for low-mass systems, with total mass $M lesssim 10 , M_odot$, which can inspiral in the LIGO and Virgo frequency bands for thousands of cycles. In this paper, we focus on the detectability of low-mass binary systems whose individual components can have large spin-induced quadrupole moments and small compactness. The quadrupole contributes to the phase evolution of the waveform whereas the compactness affects the merger frequency of the binary. We find that binary black hole templates (with dimensionless quadrupole $kappa=1$) cannot be reliably used to search for objects with large quadrupoles ($kappagtrsim 20$) over a wide range of parameter space. This is especially true if the general object is highly spinning and has a larger mass than its binary companion. A binary that consists of objects with small compactness could merge in the LIGO and Virgo frequency bands, thereby reducing its accumulated signal-to-noise ratio during the inspiraling regime. Template banks which include these more general waveforms must therefore be constructed. These extended banks would allow us to realistically search for the existence of new astrophysical and beyond the Standard Model compact objects.
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black-hole formation effects. The EOS softening is, instead, encoded in the GW luminosity and phase and is in principle detectable up to distances of the order of several Mpcs with advanced detectors and up to hundreds of Mpcs with third generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.
155 - Anson Hook , Junwu Huang 2017
In certain models of a QCD axion, finite density corrections to the axion potential can result in the axion being sourced by large dense objects. There are a variety of ways to test this phenomenon, but perhaps the most surprising effect is that the axion can mediate forces between neutron stars that can be as strong as gravity. These forces can be attractive or repulsive and their presence can be detected by Advanced LIGO observations of neutron star inspirals. By a numerical coincidence, axion forces between neutron stars with gravitational strength naturally have an associated length scale of tens of kilometers or longer, similar to that of a neutron star. Future observations of neutron star mergers in Advanced LIGO can probe many orders of magnitude of axion parameter space. Because the axion is only sourced by large dense objects, the axion force evades fifth force constraints. We also outline several other ways to probe this phenomenon using electromagnetic signals associated with compact objects.
94 - Yuki Nishino , Naoki Seto 2018
We discuss the possibility of receiving a radio signal from extra-Galactic intelligence, around the time when we observe a binary neutron star merger in their galaxy. High-precision measurements of the binary parameters allow them to send the signal ~ $10^4$ years before they themselves observe the merger signal. Using the SKA, we might receive ~ $10^4$ bits of data, transmitted from 40 Mpc distance with the output power of ~ 1 TW. We also discuss related topics for GW170817 and mention potential roles of future gravitational wave detectors in relation to this transmission scheme.
We present a novel method for revealing the equation of state of high-density neutron star matter through gravitational waves emitted during the postmerger phase of a binary neutron star system. The method relies on a small number of detections of th e peak frequency in the postmerger phase for binaries of different (relatively low) masses, in the most likely range of expected detections. From such observations, one can construct the derivative of the peak frequency versus the binary mass, in this mass range. Through a detailed study of binary neutron star mergers for a large sample of equations of state, we show that one can extrapolate the above information to the highest possible mass (the threshold mass for black hole formation in a binary neutron star merger). In turn, this allows for an empirical determination of the maximum mass of cold, nonrotating neutron stars to within 0.1 M_sun, while the corresponding radius is determined to within a few percent. Combining this with the determination of the radius of cold, nonrotating neutron stars of 1.6 M_sun (to within a few percent, as was demonstrated in Bauswein et al., PRD, 86, 063001, 2012), allows for a clear distinction of a particular candidate equation of state among a large set of other candidates. Our method is particularly appealing because it reveals simultaneously the moderate and very high-density parts of the equation of state, enabling the distinction of mass-radius relations even if they are similar at typical neutron star masses. Furthermore, our method also allows to deduce the maximum central energy density and maximum central rest-mass density of cold, nonrotating neutron stars with an accuracy of a few per cent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا