ترغب بنشر مسار تعليمي؟ اضغط هنا

From 3d dualities to hadron physics

58   0   0.0 ( 0 )
 نشر من قبل Ryuichiro Kitano
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

When one of the space-time dimension is compactified on $S^1$, the QCD exhibits the chiral phase transition at some critical radius. When we further turn on a background $theta$ term which depends on the $S^1$ compactified coordinate, a topological ordered phase appears at low energy via the winding of $theta$. We discuss what kind of theories can describe the physics near the critical point by requiring the matching of topological field theories in the infrared. As one of the possibilities, we propose a scenario where the $rho$ and $omega$ mesons form a $U(N_f)$ gauge theory near the critical point. In the phase where the chiral symmetry is restored, they become the dual gauge boson of the gluon related by the level-rank duality between the three dimensional gauge theories, $SU(N)_{N_f}$ and $U(N_f)_{-N}$.

قيم البحث

اقرأ أيضاً

In the conventional formalism of physics, with 1-time, systems with different Hamiltonians or Lagrangians have different physical interpretations and are considered to be independent systems unrelated to each other. However, in this paper we construc t explicitly canonical maps in 1T phase space (including timelike components, specifically the Hamiltonian) to show that it is appropriate to regard various 1T-physics systems, with different Lagrangians or Hamiltonians, as being duals of each other. This concept is similar in spirit to dualities discovered in more complicated examples in field theory or string theory. Our approach makes it evident that such generalized dualities are widespread. This suggests that, as a general phenomenon, there are hidden relations and hidden symmetries that conventional 1T-physics does not capture, implying the existence of a more unified formulation of physics that naturally supplies the hidden information. In fact, we show that 2T-physics in (d+2)-dimensions is the generator of these dualities in 1T-physics in d-dimensions by providing a holographic perspective that unifies all the dual 1T systems into one. The unifying ingredient is a gauge symmetry in phase space. Via such dualities it is then possible to gain new insights toward new physical predictions not suspected before, and suggest new methods of computation that yield results not obtained before. As an illustration, we will provide concrete examples of 1T-systems in classical mechanics that are solved analytically for the first time via our dualities. These dualities in classical mechanics have counterparts in quantum mechanics and field theory, and in some simpler cases they have already been constructed in field theory. We comment on the impact of our approach on the meaning of spacetime and on the development of new computational methods based on dualities.
Aspects of three dimensional $mathcal{N}=2$ gauge theories with monopole superpotentials and their dualities are investigated. The moduli spaces of a number of such theories are studied using Hilbert series. Moreover, we propose new dualities involvi ng quadratic powers for the monopole superpotentials, for unitary, symplectic and orthogonal gauge groups. These dualities are then tested using the three sphere partition function and matching of the Hilbert series. We also provide an argument for the obstruction to the duality for theories with quartic monopole superpotentials.
84 - Stanley J. Brodsky 2019
I review applications of superconformal algebra. light-front holography, and an extended form of conformal symmetry to hadron spectroscopy and dynamics. QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and gluonic fields -- not squarks nor gluinos. However, its hadronic eigensolutions conform to a representation of superconformal algebra. and provide a unified Regge spectroscopy of meson, baryon, and tetraquarks with a universal Regge slope. The pion $q bar q$ eigenstate is composite but yet has zero mass for $m_q=0.$ Light-Front Holography also predicts the form of the nonperturbative QCD running coupling in agreement with the effective charge determined from measurements of the Bjorken sum rule. One also obtains viable predictions for hadron dynamics such as spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions. The combined approach of light-front holography and superconformal algebra also provides insight into the origin of the QCD mass scale and color confinement. A key tool is the dAFF principle which shows how a mass scale can appear in the Hamiltonian and the equations of motion while retaining the conformal symmetry of the action. When one applies the dAFF procedure to chiral QCD, a mass scale $kappa$ appears which determines the hadron masses in the absence of the Higgs coupling. The result is an extended conformal symmetry which has a conformally invariant action even though an underlying mass scale appears in the Hamiltonian. Although conformal symmetry is strongly broken by the heavy quark mass, the supersymmetric mechanism, which transforms mesons to baryons (and baryons to tetraquarks), still holds and gives remarkable mass degeneracies across the spectrum of light, heavy-light and double-heavy hadrons.
115 - Ryuichiro Kitano 2012
We try to identify the light hadron world as the magnetic picture of QCD. We take both phenomenological and theoretical approaches to this hypothesis, and find that the interpretation seems to show interesting consistencies. In particular, one can id entify the rho and omega mesons as the magnetic gauge bosons, and the Higgs mechanism for them provides a dual picture of the color confinement.
122 - Wolfgang Bietenholz 2016
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-pe rturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا